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Kapitel 1

Theoretische Untersuchungen zu den

geodatischen Hauptaufgaben

1.1 Die geometrische Bedeutung der geodatischen Linie

1.1.1 Grundlegende Begriffe

In diesem Abschnitt werden zunichst die Begriffe Mannigfaltigkeit und Riemannscher Raum mit ihrer differential-
geometrischen Bedeutung kurz erldutert. Aufserdem soll die Interpretation der Christoffelsymbole als Elemente des

affinen Zusammenhangs in der von einer Einbettung unabhéngigen Riemannschen Geometrie herausgestellt werden.

1.1.1.1 Punktraum-Vektorraum

Wenn der Mensch den Begriff des Raumes verwendet, so verbindet er mit diesem einen dreidimensionalen ausge-
dehnten Raum, welchen er mit seinen Sinnen erfassen kann. Er kann den, seinen Sensoren zuganglichen Punkten des
Anschauungsraumes, durch Messen von Richtungen und Abstinden eine gegenseitige Lage zuordnen. Es sind nun,
um die Eindeutigkeit der Zuordnungen zu gewahrleisten, Vereinbarungen iiber den Mafistab und den Bezugspunkt
der Messungen nétig. Dies fiihrt zu einer Einfithrung von gewissen Berechnungsvorschriften, die dem Anschauungs-
raum eine einfache Ordnung geben. Um Berechnungen zwischen den Raumpunkten durchfiihren zu kdnnen, miissen

die Punkte des Raumes einer mathematischen Beschreibung zugénglich gemacht werden.

Betrachtet man eine Menge M von ¢ Punkten in einem n-dimensionalen Raum R", welche im folgenden mit Man-
nigfaltigkeit bezeichnet wird und einen Vektorraum V™, so wird durch die Abbildung von M in V" jeder Punkt
einem Vektor zugeordnet. Die Zuordnung setzt eine Ordnung des Raumes durch eine Vereinbarung iiber ein System
voraus, das als Koordinatensystem K bezeichnet wird. Ein Koordinatensystem K sei durch ein Paar (O, B), welches
aus einem festen Punkt O und einer Basis B besteht, definiert. Von diesem ausgehend wird durch die bijektive
Abbildung

T
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jedem Punkt X; € M beziiglich O der Ortsvektor x = OX e vn zugeordnet. (REINHARDT/SOEDER 1984)
Zuerst wird jedoch vom Begriff des Vektors, als einfachster Art einer Beschreibung der gegenseitigen Lage zweier
Punkte ausgegangen. Ein Vektor bezeichnet demnach eine Aquivalenzklasse parallelgleicher Pfeile. Die Pfeile lassen
sich als geordnete Punktepaare (X;, X]) interpretieren, wobei X; Angriffspunkte und X Zielpunkte bezeichnen.
Wichtig fiir den so eingefithrten Begriff des Vektors ist dabei die Unabhingigkeit dieses geometrischen Objektes
vom gewdhlten Koordinatensystem!, d.h. seine Invarianz gegeniiber bestimmten Basistransformationen. Um die
Ordnung des Raumes aufrechtzuerhalten reicht die Vereinbarung iiber ein gewédhltes Koordinatensystem nicht aus.
Es miissen im weiteren Rechenregeln? fiir die Elemente des Raumes V" aufgestellt werden. Dabei gelten die
folgenden Gesetze:

1. Summe
(a) xty=y+x
(b) x+(y+2z)=(x+y)+z=x+y+z
(¢c) 0,s0da x+0=x
(d) 3 —x, zu jedem x so daf x + (—x) =0

/Q'\Q
+
S\_/
"

I

IS}

»

_|_

S

»

3. Skalarprodukt

a

b

(a) xy=y-x

(b) (ax)-y =x-(ay) = a(x-y)

() x-(y+z)=x-y+x-2
)

(d) Wenn x -y = 0 und y beliebig, dann gilt x =0

Sind nun die Gesetze 1, 2 und 3 erfiillt, so wird der Vektorraum V™ als Fuklidscher Vektorraum bezeichnet, gelten
nur 1 und 2 so bezeichnet man ihn als Affinen Vektorraum.

1.1.1.2 Tensorielle Darstellung von Funktionen

Da in den folgenden Abschnitten hiufig die tensorielle Darstellung Verwendung findet, soll hier zunéchst ein kurzer
Uberblick gegeben werden. Dabei wird zwischen skalaren und vektorwertigen Funktionen unterschieden und deren
partielle Ableitungen werden diskutiert. Die Einfiihrung der Christoffelsymbole an dieser Stelle, dient dem Heraus-
stellen der Analogie zur kovarianten Behandlung von Bewegungsgleichungen in der Form der Lagrangegleichungen
zweiter Art. Die Darstellung der Funktionen hilt sich dabei weitestgehend an die von KLINGBEIL (1984) ver-
wandte Notation. Ein Index welcher nur der Unterscheidung von Objekten dient, wird als kovarianter Index mit

einem Punkt als Trennsymbol zu den Summationsindizes angefiigt.

1 Ansonsten wiirde die Eindeutigkeit der Zuordnung der Punkte verloren gehen
2KLINGBEIL(1989)
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1. Ein geometrischer Vektor x 1aft sich nach der Summenkonvention beziiglich der geradlinigen Basis e; sowie

der krummlinigen Basis b; durch seine kontravarianten Komponenten wie folgt darstellen

x = z2'e; = u'b;

2. skalarwertige Funktionen

(a)

Fiir eine Skalarfunktion gilt beziiglich einer festen Basis
s=s (m’)

Nach der Vereinbarten Notation ergibt sich dann fiir die Ableitungen nach den ko- bzw. kontravarianten

Komponenten
5. 0s
O
g — Os
’ 6:(:1

Hierbei ist zu beachten, daf sich bei Ableitungen eines Skalars nach den im allgemeinen kontravarianten
Koordinaten die kovarianten Komponenten eines Vektors (Tensor 1. Stufe) ergeben. Fiir das totale

Differential gilt dann

= 38;@ dz' = s ;dz’

Wird nun eine ortsabhdngige Basis b; eingefiihrt, so kann am Transformationsverhalten gezeigt werden,

ds

dafl es sich bei s ; ebenfalls um (kovariante) Komponenten eines Tensors 1. Stufe handelt. Aus diesem

Grund wird eine s.g. kovariante Ableitung
8;=28 i (1.1)

eingefiihrt, welche durch ihre Eigenschaft der Invarianz gegeniiber erlaubten Parametertransformationen

definiert ist.

3. wvektorwertige Funktionen

(a) Eine vektorwertige Funktion v wird beziiglich einer festen kartesischen Basis beschrieben durch

Fiir ihre Ableitungen nach den kartesischen Koordinaten ergibt sich dann

or  ork k
B = Bgi % = Tk =T
Und das totale Differential lautet in diesem Fall
_ Or
T Ozt

dr dz’ = r ;dx’ (1.2)

mit r; = r’kz-ek , wobei die rﬁ» die gemischt ko/kontravarianten Komponenten eines Tensors zweiter Stufe
bilden.
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(b) Es sei nun r =r (u',u?,u?) eine vektorwertige Funktion der krummlinigen Koordinaten, so folgt analog

u (1.2) fiir das totale Differential

dr = r yduf

Fiir die Ableitung nach den kartesischen Koordinaten gilt aber aufgrund der Kettenregel

_ or ot
T = O Bk Bl

so daf sich die ortsabhingige Basis by, = 597",@ iiber
oz’
be = eigyr

bzw. die kartesische Basis nach

_b ouF
e = bigyr

bestimmen 14ft. Im Gegensatz zu (1.1) kann aber gezeigt werden, daf im Falle eines Tensors erster oder
hoherer Stufe, dessen partielle Ableitung kein Tensor mehr ist. Am Beispiel eines Tensors 1. Stufe gilt

Tfk # rl |k

Dies kommt daher, daff, wenn man bspw. die Ableitung eines Vektors in einem Punkt des krummlinigen
Raumes bestimmen will, man Informationen {iber den Raum selbst, d.h. speziell iiber die Nachbarschaft
des Punktes benétigt. Diese Informationen, die einen Punkt im Raum mit den weiteren, den Raum
bildenden Punkten verkniipft, miissen sich aus der Metrik des Raumes ableiten lassen. Es ist nun mog-
lich, aus der geforderten Invarianz der Ableitungen, einen Korrekturterm fiir die partiellen Ableitungen
herzuleiten, so daff eine kovariante Ableitung im krummlinigen Raum gefunden werden kann. Fiir eine

vektorwertige Funktion ergibt sich diese zu
rli =1l + Fj-krk (1.3)

wobei die F;k 3 selbst keine Tensoreigenschaft besitzen. Mithilfe dieser Ableitung wird ein Absolutes
Differential iiber
Dri =1yt |j du? (1.4)

definiert. Man kann zeigen, daR Dr? die Komponenten des vollstindigen Differentials beziiglich der

krummlinigen Basis b; bildet, d.h. es gilt dann

dr = Dr'b;

1.1.1.3 Die Verallgemeinerung des Raumbegriffs

Nach dem theorema egregium von Gauf ist bekannt, daff die Kriimmung einer Fliche allein vom Metriktensor
abhingt. Das bedeutet, am Beispiel einer in einem dreidimensionalen kartesischen Raum eingebetteten Fléche,
dafl das Kriimmungsmaf dieser Fléche ohne Informationen beziiglich einer Einbettung, d.h. allein aus Messungen

3Es handelt sich hier um die Christoffelsymbole 2. Art, die Ableitung dieser 'Objekte des riumlichen Zusammenhanges’ aus den
Metrikkoeffizienten wird in einem folgenden Abschnitt eingehender behandelt.
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u® — Linie

u® — Linie

u' — Linie

u? — Linie

u' — Linie

Abbildung 1.1: Geometrische Interpretation des Affinen Tangentialraums

auf der Flache bestimmbar ist. Dies flihrte zu einer vom Einbettungsraum unabhéngigen Flichentheorie, deren
Grundlagen in den folgenden Abschnitten kurz aufgefiihrt sind.

1.1.1.3.1 Mannigfaltigkeit und Affiner Tangentialraum Der von Riemann eingefiihrte verallgemeinerte
Raumbegriff ist die Mannigfaltigkeit. Die Definition einer solchen erfolgt {iber die Transformationsgleichungen

zweier Koordinatensysteme

ut = W@, .., T") (1.5)

= w(ul,...,um) (1.6)

Sind die Transformationsgleichungen stetig differenzierbar, so handelt es sich bei der durch (1.5) und (1.6) gegebenen
Mannigfaltigkeit um eine n-dimensionale differenzierbare Mannigfaltigkeit. In jedem ihrer Punkt, kénnen die
totalen Differentiale der Koordinaten iiber du’ = g—gjdﬂj und umgekehrt bestimmt werden. Mit diesem Schritt erhilt
man die linearen Transformationen der Koordinatendifferentiale iiber die fiir einen Tensor erster Stufe geltenden
Transformationskoeffizienten. Mit Hilfe des Tensorcharakters der Koordinatendifferentiale du’ 13t sich diesen in
einem Punkt P ein Vektor du zuordnen.

du’ +— du = du'b; (1.7)
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Ordnet man einem zweiten Tensor (bzw. Koordinatendifferential) ebenfalls einen Vektor dv zu, so kann man durch

Erkldrung einer Vektorsumme
ds' = du' + dv' «— ds = du+ dv = (du’ + dv’) b,
und eines Produktes mit einem Skalar «
p' = at’ «— p = at = atb;

der Mannigfaltigkeit im Punkt P einen Vektorraum anhingen. Es wird vereinbart, daf fiir die Elemente dieses
Raumes, die Gesetze (1) und (2) aus Abschnitt 1.1.1.1 erfiillt sein sollen. Da kein Skalarprodukt erklért ist, lafst
sich nur ein affiner Vektorraum anhingen. Abb. 1.1 stellt eine geometrische Interpretation dieses Vektorraumes
dar. Es sei eine Raumkurve u’ (t) gegeben, auRerdem existiert ein Punkt P auf der Kurve, fiir den diese den
Parameterwert ¢ annimmt. Ein benachbarter Punkt P’ auf der Kurve habe nun den Parameterwert ¢ + dt und die
Koordinaten #?. Dem Koordinatendifferential u® — u* = du’ wird gemif (1.7) der Vektor du = du'b; zugeordnet
= der Endpunkt des Vektors liegt nicht in P'. Aufierdem entspricht dieser Vektor du nur im Differentiellen dem
durch dd—’fdeﬁnierten Tangentenvektor an die Kurve.

Dies fiithrt zu dem Problem, dafs einem Tensor in Form eines Koordinatendifferentials der Mannigfaltigkeit, un-
terschiedliche Vektoren beziiglich der affinen Tangentialrdume zugeordnet werden. Die Tangentialrdume in zwei

verschiedenen Punkten sind in diesem Fall nicht zusammenhédngend.

Um zu einem geeigneten Zusammenhang zwischen den Rdumen zu gelangen, ist es notwendig die Parallelitat von
Vektoren im verallgemeinerten Raum auf andere Weise zu definieren. Fiir eine gekriimmte Fliche, als Beispiel fiir
eine zweidimensionale Mannigfaltigkeit, 143t sich das Prinzip einfach verdeutlichen. Der affine Tangentialraum in
einem Punkt P kann in einem solchen Fall mit der Tangentialebene an die Fléche in diesem Punkt identifiziert
werden. Versucht man einen Vektor v in der Tangentialebene in P, parallel in einen benachbarten Punkt P’
zu verschieben, so ist dies nach der euklidschen Definition von Parallelitdt, aufgrund der Ortsabhingigkeit der
Basisvektoren, nicht méglich. Eine 'parallelste’ Verschiebung kann jedoch auf diese Weise definiert werden, daff man
v rdumlich parallel (im euklidschen Sinn) nach P’ versetzt und diesen im Anschluf daran in die Tangentialebene in
P’ projeziert. Diese Parallelverschiebung gilt natiirlich nur fiir eine differentiell kleine Entfernung zwischen P und
P'. Es kann gezeigt werden, daf diese Art der Verschiebung, der s.g. Parallelverschiebung eines Tensors 1. Stufe
nach Levi Civita entspricht.

Ein Tensor 1. Stufe v' einer Mannigfaltigkeit heifit parallelverschoben nach Levi Civita, entlang einer Kurve u® (t)
mit dem Parameter t, wenn folgende Differentialgleichungen gelten

Dv?
dt

(d.h. sich sein absolutes Differential entlang der Kurve nicht &ndert)

Mit (1.4) gilt die hierzu &quivalente Darstellung
v 4l =0 (1.8)

Uber (1.8) sind die Tangentialriume in den Punkten P und P’ miteinander verkniipft. Wie leicht zu erkennen ist,

entspricht die Einfiihrung der kovarianten Ableitung in (1.3) der Definition eines verallgemeinerten Paralleltranspor-
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| Bezeichnung | ul | u? |
geographische Koordinaten ¢ (ellipsoidische Breite) A (geographische Linge)
geoditische Polarkoordinaten S (Lange der geodétischen Linie) | a (Azimut der geodéitischen Linie)
geodétische Parallelkoordinaten:
nach Soldner x (Abzissenwert) y (Ordinatenwert)
Gaufs’sche isotherme Flichenkoordinaten X (Gauk’sche Abzisse) Y (Gauf’sche Ordinate)

Tabelle 1.1: Flidchenparametersysteme auf dem Rotationsellipsoid

tes. Beide Operationen verkniipfen die affinen Tangentialriume und ermdglichen auf diese Weise die mathematische
Beschreibung von Objekten in der Mannigfaltigkeit. Da diese Verkniipfung, nach Einfiihrung einer Metrik, wie in
(1.3) zu sehen, iiber die Christoffelsymbole geschieht, werden diese auch als Objekte des affinen Zusammenhangs

im Riemannschen Raum bezeichnet.

1.1.1.3.2 Der Riemannsche Raum Der Riemannsche Raum entsteht durch die Ausstattung einer n-dimensionalen
Mannigfaltigkeit mit einem symmetrischen Tensorfeld g;; (ul, ...,u"), so daR die Linge einer Kurve v (t) zwischen
den Parameterwerten to und ¢; gegeben ist durch

t1
s = / \/gz’j’l.}i’l')j
to

Durch die Einfiihrung dieses Feldes, kann den Tangentialrdumen iiber die Definition eines Skalarproduktes
9ij uivj =u-v

eine Euklidsche Metrik gegeben werden. Aus den partiellen Ableitungen des Metriktensors g;; lassen sich dann,
wie im folgenden noch gezeigt wird, die Christoffelsymbole der zweiten Art I‘j-k bestimmen. Sie sind die einzigen

symmetrischen Objekte des Zusammenhangs, die die Lange eines parallelverschobenen Vektors unverdndert lassen.

1.1.2 Das Problem der kiirzesten Verbindung zweier Raumpunkte

Eine Aufgabe der Geodésie besteht in der Anlage von Lagefestpunktfeldern. Die Bezugsfliche ist ein festgelegtes
Rotationsellipsoid und die Lagekoordinaten eines geodatischen Punktes werden, nach einer geeigneten Projektion
desselben auf das Bezugsellipsoid, in einem System Gaufsscher Flachenparameter definiert. Die numerischen Werte
dieser Parameter entsprechen somit den Lagekoordinaten der Punkte. Die am haufigsten Verwendung findenden
Parametersitze konnen Tabelle 1.1 entnommen werden. Da meist mehrere solcher Systeme nebeneinander Verwen-
dung finden, ist es notwendig, Flachenparametertransformationen zwischen den einzelnen Systemen durchzufiihren.
Eine Moglichkeit dieser Transformation beruht auf der Differentialgleichung der geodatischen Linie, d.h der i.A.
eindeutigen, beziiglich eines Linienelementes ds kiirzesten, Verbindung zweier Punkte auf einer Fliche. Intuitiv
ergeben sich die Bedingungen fiir das Vorliegen einer kiirzesten Verbindung zweier Punkte entsprechend Abb.1.2.
Im kartesischen Koordinatenraum wird die kiirzeste Verbindung zweier Punkte mit den Ortsvektoren r; und rs
durch einen Vektor ris = ry — ry realisiert. Sind diese beiden Punkte nun Elemente einer Fliche, so kann man
direkt folgern, daft die kiirzeste Verbindung der Punkte iiber eine Flachenkurve durch die Projektion der geradlini-
gen Verbindung rq2 auf die Fliche erhalten wird. Diese Projektion erfolgt so, daf jedem einzelnen Punkt von ris

ein Lotfufipunkt auf der Fliche zugeordnet wird. Die Lotfufipunkte bilden dann die geodétische Linie zwischen den
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Abbildung 1.2: Verlauf der geodétischen Linie auf einer gekrliimmten Fliche

beiden Punkten. Dies gilt streng genommen nur fiir stetige Flachen. Auflerdem gibt es auf beliebigen Fliachen keine
eindeutige Zuordnung, da es mehrere geoditische Linien zwischen zwei Flachenpunkten geben kann. Weiterhin kann
eine Flachenkurve nur dann die kiirzeste Verbindung zwischen 2 Punkten darstellen, wenn sie beziiglich der Fléche
selbst keine Kriimmung aufweist, d.h. ihre Kriimmung in jedem Punkt mit der Kriimmumg der Fliche identisch
ist. Damit folgt, dafs der Hauptnormalenvektor der geodétischen Linie in jedem Punkt dem Normalenvektor der
Flache entspricht. In den beiden folgenden Abschnitten wird nun die Bestimmungsleichung fiir den Verlauf der
geoddtischen Linie auf verschiedene Weise hergeleitet. In der ersten Herleitung wird der Begriff der Kriimmung
einer Verbindunglinie zweier Punkte auf gekriimmte Riume verallgemeinert und damit die Differentialgleichung der
geodatischen Linie als Bedingung fiir eine beziiglich des gekriimmten Raumes kriimmungslose Verbindung abgelei-
tet. In der zweiten Herleitung sei die Analogie zwischen einer Geraden im kartesischen Raum und der geodatischen
Linie auf eine andere Weise herausgestellt. Die gesuchte Differentialgleichung ergibt sich als Bedingung fiir den
Paralleltransport eines Tangenteneinheitsvektors. Anders ausgedriickt, ist die geodatische Linie die Linie, analog

zur Geraden im kartesischen Raum, entlang welcher der Tangenteneinheitsvektor eine konstante Richtung besitzt.

1.1.2.1 Herleitung der Differentialgleichung der geodéitischen Linie iiber die geradlinige Verbindung

zweier Punkte

Fiir die Bestimmung der kiirzesten Verbindung zweier Orter im dreidimensionalen Raum gilt allgemein folgender

Zusammenhang
d?’x
ds?

Diese Gleichung beinhaltet, daf die Kriimmung der durch x (s) definierten Kurve Null ist. Das Linienelement

=0 (1.9)

ds®> = d (1) +d (a")” +d (")

beschreibt in einem kartesischen Koordinatensystem die Rechenvorschrift zur Bestimmung des Abstandes. Die
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Lésung von (1.9) ergibt sich nach zweifacher Integration zu
x(s)=a-s+b

der Punktrichtungsform der Geradendarstellung im $3 mit dem Parameter s. Um zu einer allgemein giiltigen
Darstellung der Differentialgleichung (1.9) fiir beliebige n-dimensionale Koordinatensysteme zu gelangen, muf x (s)

zweimal integriert werden. Fiir ¢ = 1...n gilt nach dem totalen Differential

dx _ Ox dul | Oxdw | Ox dut | §n O dut
ds Oulds Ou2ds Oudds T —~ Out ds

Nach der Summenkonvention ergibt sich .
dx _ Ox dut
ds  Ou' ds

und nach der zweiten Differentiation

=0

dz_x _d (9x du? N ox & dut\  9x @% N Ox d*ut
ds2 ~ ds \Oui) ds  Ouids \ ds /] Ouidul ds ds = Oul ds?
Die Multiplikation mit 867’2 fiihrt zu

0%x  Ox du® du’ 4 ox Ox d’u'

Outdud Ouk ds ds = OuiOuk ds2

Ox Ox_
dut duk
und der Basisvektoren des Dreibeins in die Basis zuriickzuschreiben, d.h. vom einbettenden Raum unabhingig zu

Hierin kann nun durch den Metriktensor g;;, ersetzt werden. Um die totalen Differentiale des Ortsvektors

werden, mufs der Term
?x 0Ox
Ouidud duk

durch eine nur von den krummlinigen Koordinaten abhingigen Grofse ersetzt werden. Mit der Gleichung

(1.10)

dgir _ 0 (2% 2%) P?x Ox Ox 9%

oud ouJ ~ Buiow duk T Bul Oui Uk

und zwei weiteren, welche durch zyklische Vertauschung aus der obigen abzuleiten sind, erhilt man nach einfacher

Rechnung den folgenden Zusammenhang fiir (1.10)

1 aglk agjk _ 8gij . o9%x 6_)( _ -
2 (6ui dui  Ouk ) Ouidw duF Lrij (1.11)

Die mit I'y;; bezeichneten dreidimensionalen Felder werden als Christoffelsymbole erster Art bezeichnet. Mit ihnen
ergibt sich fiir die Gleichung der kiirzesten Verbindung zweier Punkte

d?ut dut du?

Jik gy T MG gy T

Uber die Multiplikation mit den kontravarianten Metrikkoeffizienten und die anschliefende Einfiihrung der Chri-

stoffelsymbole der zweiten Art

1 Ogik | Ogjr  0gij
k — ki _ kl 2 J 1]
Fz'j =g " Thj = 59 (Buﬂ + dui  Ouk (1.12)
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14t sich diese weiter vereinfachen zu . -
du ; du? du
il =0 1.13
ds? ik ds ds (1.13)
1.1.2.2 Herleitung der Differentialgleichung der geodétischen Linie iiber Parallelverschiebung von
Vektoren

Allgemein bedeutet eine parallele Verschiebung eines Vektors, daff Richtung und L#nge desselben von der Ver-
schiebung unberiihrt bleiben. Im euklidschen Raum bleibt ein Vektor und somit dessen kartesische Komponenten
durch Paralleltransport unverdndert. Um diese Unverdnderlichkeit mathematisch zu beschreiben, setzt man das
Differential des Vektors zu 0:

dv=20

in allgemeinen Koordinaten gilt fiir diesen Vektor v = vib;.

Fiir die Basisvektoren gilt:
_0x
T o

Das totale Differential ergibt sich damit nach der Produktregel zu

(1.14)

dv =b;dv* +v'db; =0
Die Multiplikation mit den Basisvektoren und die Einfiihrung des Metriktensors fiihrt dann zu

gjid'ui + bjdbwi =0

Mit dem totalen Differential der Basisvektoren db; = 2Bidu* und (1.14) folgt

— Buk

_0x 0 [ox o 0°x Ox
bidbi = 5.7 guk (am) W = Sk gui

Die rechte Seite der Gleichung entspricht (1.10) und kann dementsprechend durch die Christoffelsymbole der ersten
Art ersetzt werden. Dies fiihrt analog zum vorigen Kapitel, nach Einfithrung der Christoffelsymbolen zweiter Art,
zur allgemeinen Form des Paralleltransportes eines kontravarianten Vektors:

dv' + ngvjduk =0 (1.15)
Ist nun ein Tangentenvektor an eine Raumkurve x (s) durch £ = g; ‘Z—f = ‘g—fbi = v'b; gegeben, dann folgt fiir
dessen Parallelverschiebung, wenn

dv  du®

— + T/ — =0

ds ik ds

das Aquivalent zu (1.15) beziiglich des Paralleltransportes entlang einer Kurve beschreibt direkt die Differential-

gleichung der geodatischen Linie: _
d?u! , dud du®

ds2 ¥ ds ds
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1.1.3 Moglichkeiten zur Losung der Differentialgleichung der geoditischen Linie
1.1.3.1 Losung iiber Reihenentwicklung in Legendre Reihen

Fiir beliebige orthogonale Flachenparametersysteme ergibt sich die Gleichung der geodatischen Linie vereinfacht
aus folgenden 3 Differentialgleichungen 1. Ordnung:

du _ ! cos (o)

ds v 911

dv 1

—_— = cos (a 1.16
&= e (116)
da _ g11,2 ( 9221 in (o)

— a) — —=="__gin
ds 2911 - /922 ) 2g22+/G22

Damit lassen sich die die Koordinaten eines beliebigen Punktes P, (u”,v™) auf der geodatischen Linie, die im Pol
Py (u,0°) des lokalen geoditischen Polarkoordinatensystems den Richtungswinkel a beziiglich der Parameterli-
nie v = const besitzt, in Abhéngigkeit der Lange der geodatischen Linie s aus der Losung von (1.16) iiber eine
Taylorentwicklung nach

" 21, dfu

" =u(s) = u(0)+;Hs -Eh:o
n = 1 , d*v

v =wv(s) = U(O)+;Hs -@h:o
n 21, da

a"=a(s) = a(0)+ZHsk'W|S:0

k=1

bestimmen. Da die Ableitungen von u, v und « nach der Bogenlinge Funktionen f (u,v, @) sind, ergeben sich die

Ableitungen hoherer Ordnung durch schrittweises Anwenden der Kettenregel am Beispiel fiir u (s) nach:

Pu _ d _0fou 9fov  0fda

ds®> ~ ds (Fuls),vls),al) = Ouds Ovds Oads (1.17)

Fiir beliebige Gauf’sche Flachenparametersysteme hingen die oben genannten Differentialquotienten linear von
cos (a) und sin () ab. Somit kann die Losung der 1. geoditischen Hauptaufgabe als Reihenentwicklung dargestellt

werden:
Au=u—u® = Ajscos(a®) + 3 Au (scos (o))’ (sin (a?))"
i+k=2
Av=0v"—v" = Byssin(a’) + Z Bik (s cos (ao))i (sin (040))’c
k=2

Nach Einfiihrung der Riemannschen Normalkoordinaten x. = scos (ao) und xs = ssin (ao), ergeben sich die s.g.
Legendreschen Reihen
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| Aij | Berechnungsvorschrift |
1
AIO 911
JiL,1
A20 4(911)2
A —g11,2
1 2911,/911922
A 722,.1
02 4911922
p) p)
A30 —g11(g11,2) +2gzz(§]11,1) —g11922911,1,1
12(g11)°g22+/911
A 3911(911,2)%922,1+6922911,1911,2—3911922911,1,2
2t 12(911)°922+/922
A {911(911,2922,2—2(922,1)2)+g22(—2911,1922,1+4(911,2)2)+911922(—2911,2,2-1-922,1,1)}
12 12(g11)*(922)* /o1
A —011922,1922,2—2922911,2922,1 1911922922,1,2
03 12(g11)*(g922)° /922

Tabelle 1.2: Koeffizienten der Legendreschen Reihe fiir 1. geod. Hauptaufgabe

Ay = Ajp-xc+ Z A (Xc)i (Xs)k
k=2

oo
Av = Bu-xs+ Y Bix-(x)' (xa)*
i+k=2

Der Wert fiir A« ist ebenfalls auf diese Weise bestimmbar, jedoch existiert beim Beispiel der geographischen Ko-
ordinaten auf dem Rotationsellipsoid eine strenge Rechenvorschrift, welche sich aus dem Satz von Clairaut ableiten
1465t und der Reihenentwicklung aus numerischen Gesichtspunkten vorzuziehen ist:

) 1+e +tan?u® |
o (uo, u”, ao) = arcsin - .sinaY
1+ e + tan? u®

(wobei u der geographischen Breite § entspricht) Der Vollstandigkeit halber sei hier noch die Losung der 2. geod-
tischen Hauptaufgabe, welche sich aus der Umkehrung der Reihen mittels Reiheninversion ergibt, angegeben:

Xe = Awnlu+ Y Ay (Au) (Av)*
i+k=2

Xs = Bulv+ Y Bi(Au) (Av)
i+h=2

Die benétigten Koeffizienten ergeben sich nach (1.17) sukzessive aus den Ableitungen. Die ersten Koeffizienten*

seien in den Tabellen (1.2) und (1.3) kurz dargestellt.

1.1.3.2 Losung iiber numerische Integration des Differentialgleichungssystems

Die Entwicklung immer schnellerer Rechenanlagen in den letzten 20 Jahren fiihrte dazu, daft die klassische Losung
der geodatischen Hauptaufgaben iiber die im vorigen Abschnitt beschriebene Reihenentwicklung mehr und mehr in

4Aus MORITZ, H., HOFMANN-WELLENHOF, B. (1993).
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| Ay | Berechnungsvorschrift

Ao V911

Z gii,1
20 4/911

Z g11,2
n 2y/911

A —g22,1

A —g11(g11,2)° —g22(g11,1)°+2g11922911,1,1
30 24g11922+/911

A 3911(911,2)%922,1 —3922911,1911,2+6911922911,1,2
21 24g11922+/911

1 {911 (911,2922,2*2(922,1)2)%-922 (911,1 922,1 *2(911,2)2)+911922(4911,2,2 *2922,1,1)}
12 24911922~/911

A —011922,1922,2F922011,2922,1 —2911922922,1,2
03 24911922+/911

Tabelle 1.3: Koeflizienten der Legendreschen Reihe fiir 2. geod. Hauptaufgabe

den Hintergrund trat. Zwar weist sie beziiglich der Rechengeschwindigkeit Vorteile gegeniiber numerischen Verfahren
auf, doch in Anbetracht der heutigen Prozessorleistungen von bis zu 1GHz, relativiert sich dies. Die numerische
Integration kann nach Aufstellen der Differentialgleichung der geodétischen Linie fiir jede beliebig gekriimmten
Flache erfolgen, wihrend die Losung {iber eine Reihenentwicklung zun#chst einen grofen Aufwandt an algebraischen
Umformungen erfordert, der mit steigender Anforderung an die Genauigkeit auch von heute erhaltlichen Computer
Algebra Systemen (CAS) noch nicht in befriedigender Form durchgefiihrt werden kann.

5 zur numerischen Quadratur von Differentialgleichungen zur Ver-

Es steht eine Vielzahl verschiedener Integratoren
fligung. Diese unterscheiden sich in der Zahl ihrer Funktionsaufrufe, sowie in der Zuverlissigkeit. Einige arbeiten
mit einer Fehlerschitzung, so daf sie, bei Vorgabe einer bestimmten Genauigkeit, ohne grofien Zeitverlust, die Zahl
der nétigen Iterationen zur Einhaltung der Vorgabe selbst abschitzen. An dieser Stelle sei auf das zweite Kapitel

verwiesen, das sich intensiver mit dieser Problematik auseinandersetzt.

1.2 Das Bewegungsproblem in der Mechanik

In diesem zweiten Abschnitt des ersten Teils soll nun auf die Moglichkeiten der Formulierung des Bewegungs-
problems in der Mechanik eingegangen werden. Hierzu seien zunéchst kurz einige Begriffsdefinitionen aufgefiihrt.
Im Anschluf daran wird auf die alternativen Darstellungsformen der Bewegungsgleichungen nach Lagrange und

Hamilton eingegangen.

1.2.1 Begriffsdefinitionen

o Geschwindigkeit

Ein Teilchen bewege sich entlang einer Bahn C', dann ist seine Position zur Zeit ¢t im Punkt P durch den Ortsvektor
x (t) gekennzeichnet. Als Momentangeschwindigkeit des Teilchens im Punkt P definiert man v = ‘fi—’t‘ = %. Ist der

Ortsvektor gegeben durch x = 2% (t) e;, so folgt fiir die Geschwindigkeit v = %ei- Der Betrag ergibt sich folglich

o= vl = [ & = /(e + ey + deg) = de.

5Ein Vergleich der Leistungsfihigkeit verschiedener Integratoren bei der Losung der geoditischen Hauptaufgaben auf einem Rotati-
onsellipsoid ist in ARINGER (1994) dargestellt.
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e Beschleunigung

Als Beschleunigung eines Teilchens im Punkt P wird definiert a = Cfi—;’ = 3272‘ =v

e Impuls

dx’
P=m-v=m-—=¢;

dt

o Kraft

Greift an einem Korper der Masse m eine dufiere Kraft F an und bewegt sich dieser infolge der Kraftwirkung mit

der Geschwindigkeit v, dann gilt F = % (m - p), bei zeitunabhingiger Masse gilt dann das 2. Newtonsche Axiom

2x

F:m-a:m-‘fi?ei.

o Arbeit

Bewirkt eine Kraft F eine Verschiebung des Massepunktes um dx, dann leistet sie die Arbeit dW = Fdx. Die
gesamte Arbeit die entlang eines Weges C von einem Vektorfeld F bei der Bewegung eines Massepunktes verrichtet

wird ergibt sich aus dem Kurvenintegral

Py X2
W = F-dx:/ F -dx

Py 1

e Kinetische Energie

Die gesamte Arbeit bei der Bewegung eines Masseteilchens von P; nach P, wobei v; die Geschindigkeit zum
Zeitpunkt ¢; und v die zum Zeitpunkt ¢, ist, ergibt sich nach

x2 1 1
W:/ F.dx = imvg—imvf:Tz—Tl
X1
T; bezeichnet hier die kinetische Energie des Teilchens zu den jeweiligen Zeitpunkten 3.
e Konservatives Kraftfeld
Unter der Annahme, es existiere eine Skalarfunktion V', so daf gilt V = —VF, betrigt die bei der Bewegung eines
Massepunktes geleistete Arbeit W = V (x2) — V (x1). In diesem Fall ist die geleistete Arbeit unabhingig vom

zuriickgelegten Weg, daher wird ein solches Kraftfeld, das sich aus einem Potential ableiten 1ifst als konservatives
Kraftfeld bezeichnet.

Folgende Bedingungen miissen erfiillt sein, damit ein konservatives Kraftfeld vorliegt:

1. VxF=rot(F)=0

2. ]{F-dxzo
c
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e Potentielle Energie oder Potential

Der Skalar V' wird als potentielle Energie oder als Potential eines Teilchens in einem konservativem Kraftfeld F
bezeichnet. Das Potential ist nur bis auf eine additive Konstante festgelegt. Unter der Annahme V' = 0 fiir x = xo,

V:—/ F.dx
Xq

gilt fiir dieses

e Energieerhaltung

Fiir ein konservatives Kraftfeld gilt T} + V3 = T5 + V5 . Die Summe aus kinetischer Energie und potentieller Energie
wird als Gesamtenergie £ = T'+ V bezeichnet. In einem konservativem Kraftfeld ist die Gesamtenergie E = const.

1.2.2 Erweiterte Methoden der Mechanik

Im Allgemeinen wird bei der Formulierung von Bewegungsproblemen hauptsichlich auf die Newton/Eulersche Be-
wegungsgleichung
mx =F (a,x(t),%x(t),t) (1.18)

zuriickgegriffen. Wird hier das Kraftgesetz F (o, x (t),% (¢),t) als quantitativer Einfluf der Umgebung auf einen
Massepunkt vorgegeben, so liefert (1.18) eine vektorielle Differentialgleichung 2. Ordnung zur Bestimmung der
Bahn x (t) dieses Masseteilchens. Die Herausstellung der Analogie zu den geodétischen Hauptaufgaben erfordert
aber eine andere Betrachtungsweise des Bewegungsproblems, so daf in den folgenden Abschnitten zunachst drei

weitere Methoden zur Losung von Bewegungsproblemen dargestellt werden.

1.2.2.1 Loésung von Bewegungsproblemen iiber die Lagrangegleichungen erster Art

Innere und dufere Krifte, die auf ein System von Massepunkten wirken, schrinken die Bewegungsmoglichkeiten
der einzelnen Teilchen meist nicht ein. Je nach Wahl der 6 Anfangswerte sind die Massepunkte in einem solchen
Fall in der Lage, jeden Punkt des Raumes zu erreichen. Die meisten Bewegungen verlaufen jedoch nicht frei, d.h.
die Massepunkte sind in ihrer Bewegung durch gewisse Nebenbedingungen eingeschrinkt. Diese Nebenbedingungen
sind zunichst geometrischer Art, bspw. kann als Nebenbedingung fiir die Bewegung eines starren Pendels, zum
einen die feste Schwingebene, zum anderen der kugelférmige mégliche Aufenthaltsraum des Pendelkdrpers festgelegt
werden. Die Bewegung erfolgt dann entlang des Schnittes der beiden geometrischen Kérper. Man kann nun
iiber die Formulierung der s.g. Lagrangegleichung erster Art die Bewegungsgleichung 16sen, indem man virtuelle
Zwangskrifte Z j,, d.h. Kréfte einfiihrt, deren Wirkungslinien senkrecht zur einschrinkenden Geometrie stehen und
somit keine Arbeit verrichten.

Dies ist dquivalent zum s.g D’Alembertschen Prinzip®:

Z (mkxk - Fk) - 5X_k =0 (1.19)

Mit den Zwangskraften Z , = mpX , — F .

6Das Prinzip (1.19) geht von den s.g. virtuellen Verschiebungen 6x j eines Massepunktes k zu einem festen Zeitpunkt ¢ aus, und ist
daher als differentielles Prinzip zu betrachten.
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€z

€y

2|\ g
a ) | x

Abbildung 1.3: Korper gleitet unter Einfluff der Schwerkraft F eine Ebene herab

mgX  — F i ist dabei so zu interpretieren, daf sich die eingeprigte Kraft —F p mit der Trdgheitskraft py = mpX j
im Gleichgewicht befindet.

Die Zwangskréfte dienen nur der geometrischen Festlegung der Bewegung und tragen, da sie keine Arbeit verrich-
ten, nicht zur Bewegung selbst bei”. Allgemein lassen sich die Lagrangegleichungen erster Art in folgender Form
darstellen

mpXp=Fp+Zy

& mpkp=Fr+ Y \iVg; (1.20)

i=1
Die Zwangskrifte Z werden, wie bereits erwdhnt, derart eingefiihrt, daf sie orthogonal zur bewegungseinschrénken-
den Geometrie stehen, und somit in (1.20) dargestellt werden kénnen als Vektoren

Z, = )\Vy.i
in Richtung der Flichennormalen der restriktiven geometrischen Figuren, welche in der impliziten Darstellung
0. (X, t) =0 (1.21)

gegeben sind.
Beispiel:Fin Kirper gleitet unter Einfluf8 der Schwerkraft eine schiefe Ebene hinunter:

Wie in Abb. 1.3 zu sehen, bildet die Schnittgerade der schiefen Ebene mit der e,e, -Ebene den Winkel o mit der
e-Achse. Zum einen gilt daher zu jedem Zeitpunkt

91 (x,t) = x(t) - cos (@) — 2z (t) - sin(a) =0

"Eine gute Einfiihrung in die unterschiedlichen Methoden der theoretischen Mechanik bietet HEIL/KITZKA (1984)
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zum anderen
g2 (x,t) =y =0
Fiir (1.20) ergibt sich in diesem Fall
m-Xx=F+ A Vgi1+ Vg2 (1.22)

Um die Multiplikatoren zu bestimmen, kann man, da die Nebenbedingungen nicht explizit von der Zeit abhingen,
d.h. ‘%921' = 0 gilt, man in diesem Fall die 2. Zeitableitungen der Nebenbedingungen iiber %Zt%i = %gj:'ﬁ + %‘;ijj+ %gj'dé
ermitteln. Es folgt dann

d291

a2 Zsin(a) —Zcos(a) =0 (1.23)
d*g; .
a2 Y =0 (1.24)
Aus (1.22) ergibt sich damit
T 0 )\1 - sin (a)
m-| §j |=m-g- 0 + A2 (1.25)
Z -1 —A1 - cos (@)

Nach Einsetzen der zweiten Zeitableitungen der Koordinaten aus (1.23) in (1.25) entstehen die folgenden 3 Bestim-

mungsgleichungen fiir die Lagrangemultiplikatoren A;.

Zcos(a) .
- W = Al sin (a)
0 = )\2
Zsin(a)
M = mg -+ )\1 COS (a)
N A1 = —mg-cos(a)
A2 = 0

Die Ergebnisse werden nun in die allgemeine Lagrangegleichung 1. Art (1.20) eingesetzt und es ergibt sich

& — cos (@) sin ()
m - y =m- g . 0
— sin® (a)

Diese Gleichung lafst sich direkt integrieren. Nach der geeigneten Wahl der Konstanten folgt die Bewegungsgleichung:

5 (t) cos (@)
x (t) = 0
s (t) sin (@)

mit )
s(t)=—§g-t2-sin(a)+v0-t+so
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Die Weiterentwicklung dieses Losungsprinzips fithrt dann zu den Lagrangegleichungen zweiter Art, sowie zum Ha-

miltonformalismus, die in den folgenden Abschnitten eingehender behandelt werden.

1.2.2.2 Loésung des Bewegungsproblems iiber die Lagrangegleichung zweiter Art

Ein Ansatz, der ebenfalls auf Lagrange zuriick geht, versucht die Bewegungsgleichung zu 16sen, indem der Losungs-
raum durch die Einfithrung einer anderen Geometrie eingeschriankt wird. Die Einfiihrung der Geometrie erfolgt iiber
die Definition eines neuen Koordinatensystems, dessen Zahl unabhéngiger Koordinaten eben der Zahl der Freiheits-
grade des Systems von Massepunkten entspricht, fiir welche die Bewegungsgleichungen zu 16sen sind. Die Zahl der
Freiheitsgrade f eines Systems entspricht dabei der Zahl der Koordinaten, die nétig sind, um die Ortsfunktionen
der Massepunkte des Systems zu beschreiben. Uber das zu wihlende Koordinatensystem kann frei verfiigt werden,
jedoch bestimmt die Art des Systems die Komplexitit der Losung des Bewegungsproblems. Die Zahl der Frei-
heitsgrade verringert sich nun mit der Zahl der gegebenen Nebenbedingungen. Die minimal zur Beschreibung des
Problems notwendigen Koordinaten werden als generalisierte Koordinaten® q', ¢?, ..., ¢7 bezeichnet. Die Bewegung
mufs in diesen Koordinaten zwangsfrei verlaufen. Ein System von n Massepunkten in einem 3-D Raum wird durch
3n kartesische Koordinaten z; ; (¢) fir j = 1,2,3 und ¢ = 1,...,n beschrieben. Sei r die Zahl der Randbedingungen,
so ergibt sich die Zahl der Freiheitsgrade des Systems nach f = 3n — r. Hieraus folgt, daf im Falle r = 3n die
Bewegung des Punktsystems durch die Bedingungsgleichungen eindeutig bestimmt ist.

Der Zusammenhang zwischen den rechtwinkligen kartesischen und den generalisierten Koordinaten eines Masse-
punktes ¢ 1at sich wie folgt darstellen

Tii = Tig (qla aqfat)
T2; = 224(q" -, q%,1)
z3; = 23.(q' . q’ 1)

Bei diesen Gleichungen ist zu beachten, daff die Transformationsformeln stetig sind und ebenfalls stetige Ableitungen

besitzen®. Man klassifiziert'® nun verschiedene mechanische Systeme folgendermafen:

1. skleronome und rheonome Systeme

(a) skleronom: explizite Zeitabhingigkeit in den Transformationsgleichungen

(b) rheonom: keine explizite Zeitabhingigkeit
2. holonom und nichtholonome Systeme

(a) holonom: Nebenbedingungen lassen sich in der Form ¢ (qk; t) =0 fiir k=1,.., f darstellen

(b) nichtholonom andernfalls
3. konservative und nicht konservative Systeme

(a) konservativ: alle auf ein System wirkenden Kréfte lassen sich aus einer Potentialfunktion herleiten

8Bei diesen kann es sich auch um Winkel, Abstinde oder daraus abgeleitete Gréfen handeln.

9An dieser Stelle ist auf die Analogie zur Definition einer Mannigfaltigkeit hingewiesen.

10Beispiel fiir eine Klassifikation eines mechanischen Systems: Ein Massepunkt bewege sich reibungslos auf einen langen Draht, welcher
mit konstanter Winkelgeschwindigkeit um eine senkrechte Achse rotiert. In diesem Fall handelt es sich um ein rheonomes, holonomes
und konservatives System.
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(b) andernfalls

In den folgenden beiden Abschnitten werden die Lagrangegleichungen zweiter Art auf verschiedene Arten hergeleitet.
Die erste Herleitung geht von den Lagrangegleichungen erster Art aus. Die zweite verfolgt einen Ansatz iiber das
Variationsproblem. Bei dieser wird der Beweis zunédchst nur fiir Integrale der Form

b
/ F(z,y,y")ds

angegeben, das Ergebnis ist jedoch leicht auf die in diesem Zusammenhang auftretenden Integrale der Form

b
/ F ($3ylay2a "'ayfayiayIQa ay}) dz
a

zu iibertragen.

1.2.2.2.1 Herleitung der Lagrange Gleichungen zweiter Art iiber die Newton/Eulersche Bewegungs-
gleichung Der Ortsvektor eines Massepunktes i beziiglich des rechtwinklig kartesischen Sytems ist gegeben durch

x;=| 2% | =2'e;, j=1,2,3

Unter der Annahme, daf sich die generalisierten Koordinaten eines Massepunktes 4 sich aufgrund einer geleisteten

Arbeit dW um dg¥ veréindern, folgt fiir die daraus entstehende Verschiebung

_ 8x,,~

dq.ki =X dq.ki

Fiir die geleistete Arbeit in einem System von n Massepunkten ergibt sich nach

n n n n n n

0x —1 —l

dW =) Fidx;=)» F; 8qk’ dg¥ = Fibridgh = F by biddh = Figradd =) ®idgh (1.26)
i=1 =1 i=1 i=1 i=1 i=1

mit ®; als der mit der ortsabhingigen Koordinate ¢* assozierten generalisierten Kraft, welche bestimmt werden

kann tiber
= -l L 6X.i
®y, = Z:ZI F ;91k.; = ;FZW

Fiir einen Massepunkt ¢ folgt aus (1.26) und mit dem totalen Differential

ow ~ ow
dW = ——d¢* = &, ,d¢" &, — — |dd* =0

Ubertragen auf ein System von Massepunkten ergibt sich damit ein Gleichungssystem in dem, da die d¢* unabhiingig

voneinander sind, die Koeffizienten (@k — %) alle Null sein miissen.

ow

P = —



KAPITEL 1. THEORETISCHE UNTERSUCHUNGEN ZU DEN GEODATISCHEN HAUPTAUFGABEN 22

Die totale kinetische Energie eines Systems ergibt sich nach
Iem .o
T =35 miX; (1.27)
oder als quadratische Form der generalisierten Geschwindigkeiten fiir den skleronomen Fall zu

T=§Zm,~wg- aqzqk l Zm, by - b“q q = 22"%@,: aq‘,’d’“dl (1-28)
i=1 i=1 i=1

Im Folgenden werden zwei zur Herleitung der Lagrange-Gleichungen notwendige Rechenregeln abgeleitet:

1. Kiirzen von Produkten

In verallgemeinerten Koordinaten gilt fiir die Geschwindigkeit aufgrund der Kettenregel

f k f
. Ox; 0¢"\  0Ox; _ by, 9%
i _; (aqk ot ) o =2 (i @)+ (1.29)

k=1
Die Ableitung nach den generalisierten Geschwindigkeiten fiihrt zum gesuchten Zusammenhang

o, (Sho G )+ %) ox,
gk BYG = B¢k

= X,k.i (130)

2. Vertauschen von Operatoren

Nach (1.29) folgt

0% ; i(@xz ,k> 0%x;
¢ 9g*dq! otoqt

d (0x;\ _ / 0 [0x; dg* 0 [0x; . / x4 0%x;
EJ@J‘%Q@(@) )*m(w)"zﬂww'>+ma

k=1

Es ergibt sich dann unter der Voraussetzung, daf die zweiten partiellen Ableitungen von x ; stetig sind:
d 6X i 6)( i
— — | = - 1.31
i (5) = % (31

Der Sinn der Einfithrung der neuen Koordinaten liegt nun darin, daff man die Nebenbedingungen (1.21) fiir die

Lagrangegleichungen der ersten Art auch interpretieren kann als Gleichungen von (3n — 1)-dimensionalen Hyperfl4-
chen in einem, durch die Punkte des mechanischen Systems definierten 3n-dimensionalen Konfigurationsraum. Der
Schnitt der Hyperflichen bildet einen f -dimensionalen Riemannschen Teilraum mit den Parametern ¢*. Dieser ist
der Losungsraum des Bewegungsproblems, mit anderen Worten, es ist der Raum, der noch von den Bahnkurven
der Massepunkte erreichbar ist.

Wenn man die Lagrangegleichungen der ersten Art in den generalisierten Koordinaten ausdriickt, so fallen die
Zwangskrifte weg. Dies liegt daran, daft durch Anwenden der Kettenregel bei der Ableitung von

9. (xk (¢" (1), ¢ (1)) ,£) =0
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nach den generalisierten Koordinaten zwei zueinander senkrecht stehende vektorielle Funktion entstehen, die mit-

einander skalar multipliziert werden. Zum einen ergeben sich Vektoren in Richtung der Flichennormalen der durch

9. (X, t) =0

definierten Nebenbedingungen, zum anderen ergeben sich die Tangentenvektoren an den, durch die Parameter g*
definierten Losungsraum der Bewegung.

Die Darstellung von (1.20) in generalisierten Koordinaten lautet

0x; _ 0% ; a 691 (X.k (q17 sy qf) at) 0% ;
g ~Figg TN ok, o

9 i(x.k(qla---aqf)at)

8
Hierin entsprechen die — o den senkrecht zu der durch die Nebenbedingung definierten Fliche ste-
Bx ,

henden Vektoren, wihrend die die Tangentenvektoren an den Losungsraum sind. Damit gilt

i)\agz Xk q: aqf)at)‘%
0x; g

und die Darstellung der Bewegungsgleichung in den generalisierten Koordinaten reduziert sich auf die Erweiterung

der Newton/Eulerschen Bewegungsgleichung mit %’;-,j. Die Herleitung der Lagrangegleichungen der zweiten Art
folgt dann iiber
m,x, X ki = F_i "X ki (1.32)

Wendet man die Produktregel und (1.31) an so gilt allgemein

.zaqk - 4 6qk K 6qk

Nach Umstellung und Multiplikation mit m; folgt mit (1.32) unter Annahme der Konstanz der Masse

L T TR
dt l 6qk K3 X 6qk - K2 2 8qk

Die rechte Seite der obigen Gleichung entspricht dabei der generalisierten Kraft (vgl. (1.26)):

. Ox; 0x
mi- X — = sz = ®p;

oq*

Nach der Summation iiber alle Massepunkte folgt:

mit (1.27) und (1.30) ergibt sich andererseits

oT . 0%
o = S{mng )
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oT { . 65{.1’}
aF = ™R g
Oq - Oq
was eingesetzt in (1.33) zu den Lagrangeschen Bewegungsgleichungen zweiter Art fithrt :

d (0T oT
it (5i5) ~ = .

Falls sich die generalisierten Krifte aus einer Potentialfunktion nach

ow ov

herleiten lassen, wobei das Potential eine reine Ortsfunktion V (qk) ist, kann man, mit Einfithrung der Lagrange-

funktion
L=T-V (1.36)
fiir (1.34) schreiben
d (0L oL
=)= = 1.
dt (aqk) o =" (1.37)

1.2.2.2.2 Herleitung der Euler/Lagrange-Gleichung iiber das Variationsproblem Ein dem differentiel-
len D’Alembertschen Prinzip gleichwertiges, integrales Prinzip ergibt sich aus der Integration der s.g. Lagrangeschen
Zentralgleichung'' . Es handelt sich um das Hamiltonsche Prinzip'?:

Ein konservatives mechanisches System bewegt sich zwischen den Zeitpunkten ¢; und t¢2 so, daf das s.g. Wirkungs-

to
/ Lt
31
annimmt. Anders ausgedriickt gilt

2]
5t / Ldt =0
t1

Wie schon zuvor fiir das D’Alembertsche Prinzip, konnen auch hier die Lagrangegleichungen zweiter Art abgeleitet

integral

ein Extremum!3

mit 6! als Zeichen fiir die erste Variation.

werden. Der Einfachheit halber sei dies im folgenden, wie bereits erwihnt, fiir Funktionen des Typs f (z,v,v')
dargelegt.

Gesucht ist die Bedingung die eingehalten werden mufs, damit ein Integral der Art

/ F @y, do (1.38)

Extremwerte animmt. Dazu sei zundchst eine Kurve durch y = Y (z) im Intervall a < z < b vorgegeben welche
durch die Punkte A (a,Y (a)) und B (b,Y (b)) verlduft. Eine benachbarte Kurve, ebenfalls durch A und B kann

UFiir die Herleitung dieser Gleichung sei auf HEITZ/STOCKER-MEIER, (1998) verwiesen.

2siehe SPIEGEL (1990)

13 Aufgrund der Tatsache, daf es sich bei diesem meist um ein Minimum handelt, wird das Prinzip oft als Hamiltonsches Prinzip der
kleinsten Wirkung bezeichnet.
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dann durch
y=Y (z)+en(z) =Y +ep

unter der Nebenbedingung 1 (a) = 7 (b) = 0 gegeben sein. € sei in diesem Fall ein von z unabhéngiger Parameter.
Das zu (1.38) dquivalente Integral der benachbarten Kurve lautet damit

b
I(g) :/ F(z,Y +en,Y' +en')dz
a

Die Bedingung fiir ein Extremum ist dann MB? |e=0o =0 . Nach der Durchfiihrung der Differentiation unter dem

Integral, ergibt sich die notwendige Bedingung zu

oI(e), _ [*(OF  OF )\, _
e |a:0—/a (8y +6y’n de =0

b
oOF d (OF
/a"(a—y‘%(a—y))dw

Da 7 beliebig gewéhlt werden darf, gilt entsprechend auch

d (OF OF
() * 3 =0 (139

Partielle Integration filhrt dann zu

(s.g Eulersche Gleichung)

1.2.2.2.3 Beispiel zur Lésung von Bewegungsproblemen iiber die Lagrangegleichungen zweiter Art
Das Prinzip der Losung von Bewegungsproblemen iiber die Lagrangegleichungen zweiter Art sei am, schon bei den
Lagrangegleichungen erster Art besprochenen, einfachen Beispiel eines, eine schiefe Ebene reibungslos herabglei-
tenden Korpers, dargestellt. Wie in Abb. 1.3 ersichtlich, kann im vorliegenden kartesischen Koordinatensystem
[ez, €y, €] eine generalisierte Koordinate s eingefiihrt werden, die die Bewegung des Korpers ausreichend beschreibt.
In diesem Fall ist leicht erkennbar, dafs das System nur einen Freiheitsgrad besitzt und somit eine generalisierte
Koordinate zur Beschreibung der Bewegung ausreicht. Die Koordinate s unterliegt keinerlei Zwéngen, d.h. sie kann
je nach Wahl der Anfangsbedingungen jeden Wert annehmen. Die Transformationsgleichungen lauten in diesem
Fall

x = s-cos(a)
y =0
z = s-sin(a)

Nun wird zur Losung des Problems die Lagrangefunktion nach (1.36) aufgestellt. Fiir die kinetische Energie ergibt
sich

Lo 2 .2 L .o

T= im(w +9°+ 2 ) = gms

Die potentielle Energie ist gegeben durch

V=m-g-z=m-g-s-sin(a)
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Die Lagrangefunktion lautet somit

2

1
L=§mé —m-g-s-sin(a)

und mit ¢ = § und g = s ergibt sich fiir (1.37)

d (0L oL . .
@ B—qk _a_qkzm-s—m-g-sm(a)=0

Daraus ergibt sich die folgende Differentialgleichung zweiter Ordnung
§=g-sin(a)
Die Integration fiithrt schlieflich zur Bewegungsgleichung:
1 5. )
s(t) = —igt sin (@) + S0t + so

Mit Hilfe des Lagrangeformalismus kann man die Zahl, der fiir das Bewegungsproblem zu l6senden Differential-
gleichungen von 3n auf f = (3n — r) reduzieren. Jedoch bleibt hier das Problem Konstanten der Bewegung zu
bestimmen, die in der Form einer Differentialgleichung erster Ordnung vom Typ G = (¢* (t) ,¢* () ,t) = const die
Gesamtordnung des Systems jeweils um 1 verringern. Man kann zwar durch Betrachten von L, zyklische Koordina-

t14, aber dieses Verfahren ist

ten bestimmen, d.h. Koordinaten, von der die Lagrangefunktion nicht explizit abhing
recht umsténdlich. Um das Problem zu vereinfachen, fiihrt man zuséitzlich weitere Koordinaten so ein, dafs diese
konstant werden, wenn die ihnen zugehérige generalisierte Koordinate zyklisch wird. Nach (1.37) ist dies der Fall

bei den generalisierten Impulsen
q

Die Erweiterung des Ldsungsraumes auf einen 2f -dimensionalen Raum'® mit den Koordinaten (qk,pk) fir k =
1,.., f fihrt zur s.g. Hamilton Theorie mit der eine Moglichkeit gegeben wird, zyklische Koordinaten und damit

Konstanten der Bewegung auf einfache Weise zu bestimmen.

1.2.2.3 Losung mechanischer Probleme iiber den Hamiltonformalismus

Die Definition der Hamiltonfunktion mit Hilfe der Lagrangefunktion lautet

f
H=> pi¢k - L (1.40)
k=1
Diese Funktion entspricht im Falle eines konservativen Systems, der gesamten Energie
H :Eges = Epin +Epot =T+V

dieses Systems. Damit ist ersichtlich, dafs es sich bei (1.40), unter Voraussetzung daf die potentielle Energie unab-
héngig von der Zeit ist, nur um eine Form des Energieerhaltungsatzes handelt. Allgemein sollte die Hamiltonfunktion
sich mit Hilfe der Lagrangegleichungen als eine Funktion der generalisierten Koordinaten und der generalisierten Im-

pulse H (q’“, pk: t) darstellen lassen. Man kann nun die Bewegungsgleichungen auf folgende Weise in symmetrischer

YFiir diese gilt daher gTLk =0=p"
15Wird auch als pg - Phasenraum bezeichnet.
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Form angeben

-k O0H
r = "
q
qk - 6_H
Opk
Diese Gleichungen werden als kanonische oder Hamiltonsche Bewegungsgleichungen bezeichnet. Die Symmetrie
der Impuls- und Ortskoordinaten ist leicht zu erkennen. Jede zyklische Koordinate ¢° fiir die gilt p¥ = % =0

verringert nun die Ordnung der kanonischen Gleichungen um 2. Diese zyklische Koordinate 14fst sich durch direkte
Integration bestimmen. Ist es nun méoglich, durch eine Koordinatentransformation alle ¢* zyklisch zu machen, so ist
das Bewegungsproblem auf die Integration von f Bestimmungsgleichungen der ¢* zuriickgefiihrt. Der Vorteil des
Hamiltonformalismus besteht nun darin, daff es moglich ist aufgrund der Symmetrie, durch Einfiihrung neuer Ko-
ordinaten bzw. iiber Koordinatentransformationen, zyklische Koordinaten auf einfache Weise zu ermitteln. Jedoch
ist die kanonische Darstellung nicht invariant beziiglich beliebiger Transformationen ,wie es bei den Lagrangeschen
Gleichungen zweiter Art der Fall ist. Eine Transformation, fiir die die kanonische Darstellung invariant ist, wird
als kanonische Transformation bezeichnet. Seien die neuen Koordinaten durch

" = " (pF. 4", ¢)
ak

gegeben, und gibt es eine neue Funktion H, so daf

.« _ OH
P = a7
& OH
T W

gilt, dann existiert eine Lagrangefunktion L, fiir die dann folgt
A=Y 79¢ -L
Aus dem Hamiltonschen Prinzip

min

to
/ Ldt
t1

ta
/ Tt
t1

14t sich eine notwendige Existenz einer s.g. Erzeugenden Funktion G mit % = L — L ableiten. Hingt diese von

min

¢* , P* und ¢ ab, so wird sie mit G (¢*,5*,t) = S (¢*,7*,t) bezeichnet. Hier gilt dann

H—a**H; T =55 4 = ot
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Wenn man nun erreicht, daf p* und g* zyklische Variablen werden, so 1&#t sich, wie zuvor bereits erwiihnt, das
mechanische Problem einfach 16sen. Es existiert in Form der Hamilton-Jacobischen Gleichung eine Bedingung fiir
die s.g. FErzeugende Funktion einer solchen kanonischen Transformation. Um das Bewegungsproblem zu 16sen, wird
eine Funktion S derart bestimmt, da® sie die Bedingung %—tg + H (p*,¢*,t) = 0 oder

ds oS
g == gk = 141
ot <6t’q ’t> 0 (1.41)

erfiillt. Die Losung kann in der Form S (¢*, 8*,t) erhalten werden, dabei bezeichnen die 3* die iibrigen n freien
Parameter'S, welche bis auf eine gemeinsame additive Konstante festgelegt sind. Die Ortskoordinaten ¢* (8%,~*, ¢)
kénnen iber p* = % und 7 = % = 7% = const. bestimmt werden. Falls die Hamiltonfunktion nicht explizit
von der Zeit abhingt, 145t sich der von der Zeit unabhéngige Teil der Erzeugenden, nach Separation der Variablen,
schreiben als

5=251(¢") + S () + ... + 5 (¢)

Damit vereinfacht sich die Hamilton-Jacobische Gleichung zu

85
H| =, |=E= .
<6qk’q> const

worin F die Gesamtenergie des Systems bezeichnet.

1.3 Herausstellen der Analogie zwischen dem geometrischen und me-

chanischen Problem

1.3.1 Ableitung der Differentialgleichung der geoditischen Linie iiber die Eulersche
Gleichung

Die Differentialgleichung der geodétischen Linie kann nun, nach den in den vorigen Abschnitten beschriebenen
Verfahren, abgeleitet werden. Die Eigenschaft der geodétischen Linie, die kiirzeste Verbindung in beliebigen, durch
ihre Metrik ausgezeichneten Riemannschen Raumen darzustellen, fiihrt zu einer Moglichkeit der Ableitung ihrer

Bestimmungsgleichung iiber die Minimierung des durch

B B s i i
/ T 2 du® dul

SAB :/ ds :/ gz'jdulduJ :/ gijdidids
A A s1 S S

d

gegebenen Abstandsmafes. Eingesetzt!” in £ (25) — 25 = 0 ergibt sich, wenn zuniichst s > 1 angenommen wird

ouk T
und somit die Wurzel vernachléssigt werden kann,

d (9 (gij%%) 9 (gij g %) o

ds ok ouk

(1.42)

16Djese werden mit den neuen Impulsen p* identifiziert.
i .
17Hier sei anzumerken, daf zum besseren Vergleich ddis = u* gesetzt wurde
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d du’ Dgij du’ dw?
= s ( Jid ds) ~ Quk ds ds =01/2

Nach Umordnung folgt dann

9ij U’ + 5 (Gik,j + Grji — Gijp) W' =0

Jetzt werden wieder die Christoffelsymbole der ersten Art eingefiihrt und analog zu den in den vorigen Kapiteln
beschriebenen Verfahren ergibt sich die folgende Differentialgleichung als Bestimmungsgleichung!® fiir den Verlauf
der geoditischen Linie im durch g;; definierten Riemannschen Raum.

d?u! , du? du®

4 % ds ds
1.3.2 Herleitung der expliziten Form der Lagrange-Gleichungen zweiter Art

In den vorhergegangenen Abschnitten wurde zum einen die Herleitung der Lagrangeschen Gleichungen aus der
Erweiterung der Newton/Eulerschen Bewegungsgleichung in generalisierten Koordinaten aufgezeigt, zum anderen
wurde gezeigt, daft die Bedingungsgleichungen des Variationsproblems

b
61/ F(t)q17q27"'aqfaqla(j?r'w(jf)dt:0
a

den Differentialgleichungen der geodétischen Linie ebenso dquivalent, sind wie auch den Lagrangegleichungen der
zweiten Art. Es handelt sich also bei der Losung der geoditischen Hauptaufgaben, wie auch bei der Losung der
Bewegungsgleichung iiber die Lagrangegleichungen der zweiten Art, um eine Losung desselben Problems. Um die
Analogie etwas besser herausstellen zu konnen, sei an dieser Stelle die Herleitung der expliziten Form der Lagran-
gegleichungen iiber die Einfiihrung der generalisierten Koordinaten angefiihrt. Dieses schon zuvor beschriebene
Verfahren, das Bewegungsproblem iiber eine Einschrinkung des Lésungsraumes, durch die Wahl von generalisier-
ten Koordinaten, zu vereinfachen, formuliert das mechanische Problem in einer f-dimensionalen differenzierbaren
Mannigfaltigkeit. Uber die Einfilhrung einer Metrik wird diese Mannigfaltigkeit zu einem Riemannschen Raum.
Die Bedingung welche die Metrik erfiillen muf, ist an die Existenz eines symmetrischen Tensorfeldes g;; (ql, gt )
gebunden, so dafs sich die Liange einer Kurve zwischen 2 Parameterwerten tg und ¢; berechnet 13t nach

t1
S=/ \/ 9i4°¢ dt
to

Wie in (1.28) gezeigt, erfiillt die kinetische Energie diese Forderung, so daff man einen Metriktensor der Form

0x; 0x
k) = RO
9ij (q ) = ;ml dq Ogi (1.43)
einfilhren kann. Hieraus ergibt sich die Transformation ds® = 2Tdt* = g;;¢'¢’dt* wobei das auftretende Lini-
enelement ds als kinematisches Linienelement bezeichnet wird. Das Hamiltonsche Prinzip besagt, dafs falls ein

konservatives System vorliegt und sich daher die Massenkrifte nach (1.35) berechnen lassen, die erste Variation von

8Djese Gleichung beschreibt den Verlauf einer entfernungsmigRig kiirzesten Verbindung, wéhrend in (1.37) durch die Transformation
ds? = 2T'dt? = g;;¢*¢7 dt? eine kiirzeste Verbindung beziiglich des eingefiihrten Linienelementes beschrieben wird.
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(1.36) verschwindet. Die Lagrangefunktion L = T — V ergibt sich dann mit (1.43) und V (¢*) zu

1 o
L =395 (") ¢'d =V (¢") (1.44)

Setzt man diese in die Eulerschen Gleichungen ein, so folgt analog zu (1.42)

a(gijQ)—gﬁqq’—%:O

Wie leicht ersichtlich, ergibt sich dann

d2 ql . dqj qu B

PR LI TP TR
Diese Gleichung entspricht (1.34), damit gilt fiir den kréiftefreien Fall, d.h. fiir den Fall mit Potential 0 die Diffe-
rentialgleichung der geodétischen Linie:

o il

2 IR dt odt
Somit ist die Losung der Differentialgleichung der geodétischen Linie vollkommen analog zur Losung der Bewe-
gungsgleichung eines Massepunktes auf einer Flache mit dem Potential Null und der Bogenlinge s als unabhéngigem
Parameter. Dies fiihrt dazu, daff Losungsstrategien zwischen den beiden Problemen iibertragbar sind. Vor allem
145t sich damit die Differentialgleichung der geodatischen Linie in kanonischer Form angeben.

1.4 Eine Moglichkeit der Losung der geodéatischen Hauptaufgaben iiber

die kanonischen Gleichungen der geodatischen Linie

Aufgrund der zuvor beschriebenen Analogie, ist es moglich, den Hamiltonformalismus zur Lésung der geodétischen
Hauptaufgaben zu verwenden. Angewandt auf die Problematik der geoditischen Hauptaufgaben auf einem Rotati-
onsellipsoid, folgt aus (1.44) und wenn das Potential den Wert 0 erhélt, daf die Gesamtenergie, die in einem solchen
Fall durch die Hamiltonfunktion H gegeben ist, nur aus dem Anteil der kinetischen Energie besteht. Wichtig ist
hierbei die Betrachtung des kinematischen Linienelementes ds? = 2T'dt?, welches beim Lagrangeformalismus das
geometrische Linienelement ersetzt. Falls nun der Hamiltonformalismus angewandt werden soll, so mufs die quadra-
tische Form fiir die kinetische Energie durch die Metrik des Rotationsellipsoides ersetzt werden. Demzufolge ergibt

sich analog zu (1.44) fiir die Hamiltonfunktion
1 .
H=T+V=T= igij(qu (145)

Im Vergleich zum allgemeinen Linienelement ds? = g;;du’du’ sieht man, daf in der kinetischen Energie und damit
auch im kinematischen Linienelement die Geschwindigkeiten ¢¢ = 88—‘{ auftreten. Bei der Allgemeinen Darstellung

sind jedoch nur die Differentiale du’ vorhanden. Aus diesem Grund ergibt sich die Hamiltonfunktion zur Bestimmung
der kiirzesten Verbindung zweier Punkte in beliebigen Riemannschen Rdumen zu
1. du®du’
H=Z§.——
294745 "ds
Um das Problem 16sen zu kénnen, miissen die generalisierten Geschwindigkeiten in (1.45) eliminiert werden, damit

sich die Hamiltonfunktion in der bendétigten Form ergibt. Dabei kann man die Bestimmungsgleichung fiir die
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generalisierten Impulse

oT

verwenden.

Fiir den Fall der Losung der geodatischen Hauptaufgaben folgt mit (2.4) und

M? 0 ]

mww[owww

H= % <M2- (2—‘5)2 + N2 cos? () - (%)j

oder fiir ein allgemeines orthogonales Flachenparametersystem

H:%(E-(‘;—f>2+a-(‘;—f>2> (1.47)

Unter Verwendung von (1.46) fiir den Fall eines Potentials V' = 0, d.h. es gilt H = T, ergeben sich die Bestim-

die Hamiltonfunktion

mungsgleichungen fiir die 'generalisierten Impulse’

B dul
Dur = %
o du?
Duz = s

Einsetzen der quadrierten Impulse in (1.47) fiihrt zur Hamiltonfunktion des Systems, die dann im Falle der geoda-

tischen Hauptaufgaben auf einem Rotationsellipsoid folgende Form annimmt

_1 é 3 1 (b (1+ € cos® (@))3 N p3b% (1 + € cos® () cos? ()
2\ M2 N2cos?(p)) 2 a? a*
Die kanonischen Gleichungen lauten dann
dp _ OH
ds  Op,
ar_ ol
ds ~ Opy
sowie
dp, _ _OH
ds Oy
dpr _ _0H
ds O\

Auf einfache Weise 16sen lafst sich das Problem, wenn man die Erzeugende einer Transformation findet, fiir die
die neuen Koordinaten zyklisch werden. Diese muf dann (1.41) erfiillen, wobei die Separation der Variablen zur
gesuchten Losung fiir die Erzeugende fiihrt (es ergeben sich elliptische Funktionen). Aus den konstanten neuen
Impulsen’ und Koordinaten lassen sich iiber die Transfomationsformeln ¢, A sowie p, und p, in Abhéngigkeit von

s berechnen, so dafs damit das Problem gelost ist.

An dieser Stelle sei noch auf zwei weitere Ansétze zur Losung der geodatischen Hauptaufgaben iiber die kanonische



KAPITEL 1. THEORETISCHE UNTERSUCHUNGEN ZU DEN GEODATISCHEN HAUPTAUFGABEN 32

Darstellung der geoditischen Linie verwiesen. Der Ansatz von SCHURER, (1975) geht im Unterschied zum zuvor
dargelegten, von der reduzierten Breite 3 mit tan (3) = ﬁtan (p) aus, was an (1.47) nichts dndert. Der
Metriktensor hat dann die etwas einfachere Form

ds* = a® (1 —€® cos® (B)) - dB* + a® cos® (B) - dN?

pp und py werden entsprechend dem obigen Ansatz eingefiihrt, jedoch umgeht er die Losung der elliptischen Funk-
tionen, indem er die Hamiltonfunktion in zwei Anteile zerlegt. Die Unterteilung erfolgt derart, daf die erste
Teilfunktion Hy ohne Probleme mit dem Hamiltonformalismus gelost und die Restfunktion R als Storfunktion
in Analogie zur Stoérungsrechnung in der Himmelsmechanik betrachtet werden kann. Die Lisung von (1.41) mit
H = Hj fiihrt zur ’Bewegungsgleichung’ der geodétischen Linie auf einer Kugelfliche. Die hier abgeleiteten Formeln
eignen sich gut zur Untersuchung des Verlaufs der geodétischen Linien iiber mehrere Umléufe hinweg.

Einen weitere Losung kann KLOTZ (1991) entnommen werden. Er gelangt {iber den Hamiltonformalismus zu einer

integralen Darstellung der ellipsoidischen Lénge A in Abhingigkeit der von reduzierten Breite (.



Kapitel 2

Numerische Untersuchungen zu den

geodatischen Hauptaufgaben

Im Rahmen dieses zweiten Teils der Arbeit wurde mit MATLAB unter WINDOWS ein Programmsystem erstellt,
das dem Benutzer die Moglichkeit bietet numerische und geometrische Eigenschaften von geoditischen Linien auf
einem Rotationsellipsoid zu untersuchen. Hierbei wurde fiir die Berechnung der geodatischen Hauptaufgaben auf
die numerische Integration eines Differentialgleichungssystems der geodatischen Linie in kartesischen Koordinaten
zurilickgegriffen. Um die geometrischen Eigenschaften von geodétischen Linien zu untersuchen, ist es notwendig ihren
Verlauf auf der Bezugsflache graphisch zu visualisieren. Das erstellte Programmsystem bietet hierzu die Moglichkeit,
nach der Berechnung der geodétischen Hauptaufgaben, den Verlauf der zugehérigen Geodate auf der Bezugsfliache,
stellvertretend durch eine frei zu wihlende Zahl von Stiitzstellen, dreidimensional darzustellen. Der Blickpunkt
kann beliebig gewdhlt werden und es besteht die Mdglichkeit einer Vergrdosserung bzw. Verkleinerung. Fiir die
Aufgaben der Landesvermessung ist es noétig, die geoditischen Hauptaufgaben unter Vorgabe einer bestimmten
Fehlerschranke zu 16sen. In den meisten numerischen Ansatzen geschieht dies durch eine Fehlerschitzung. In dieser
Arbeit wird jedoch ein anderer Weg beschritten. Es wird eine, speziell auf die Losung der geodétischen Linien auf
einem Rotationsellipsoid bezogene Funktion, mit der die Zahl von Iterationen des Differentialgleichungslosers nach

Vorgabe der geforderten Genauigkeit berechnet werden kann, empirisch abgeleitet.

Als ein Beispiel fiir die Untersuchung numerischer Eigenschaften der Geodaten auf einem Rotationsellipsoid bietet
das Programmsystem weiterhin die Moglichkeit ein geodétisches Parallelkoordinatensystem in Soldnerscher Anord-

nung zu berechnen und darzustellen.

33
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2.1 Numerische Verfahren zur naherungsweisen Bestimmung der Lo-
sung von Differentialgleichungen erster Ordnung als Anfangswert-

problem

2.1.1 Beschreibung des Problems

Allgemein ist eine Differentialgleichung erster Ordnung gegeben durch y' = f (z,y), die Werte y = yo sowie x = xg
seien als bekannt vorausgesetzt. Das Problem besteht nun darin, den Funktionswert der Funktion y = g (z) an der
Stelle z = z¢ + h zu bestimmen. Im weiteren sei dieser mit y bezeichnet. Die zugehdrige Integralgleichung lautet

damit

zo+h
y=y0+/ f(@,y)do

Zo
2.1.2 Losung iiber Reihenentwicklung
Eine Moglichkeit der Losung besteht darin, die Funktion y = g (z) an der Stelle x = x¢ in eine Taylorreihe
1 1
y=9(z0) + (& —20) ¢ (z0) + 5 (2 - 20)” g" (w0) + 5@~ 20)” g" (z0) + -~

zu entwickeln. Mit der Ausgangsgleichung gilt y' (z) = f (z,y) und fiir die h6heren Ableitungen folgt

0 0
yio= 2 g

moy_ 4 (0f  LOF 0*f  ofof *f of 62f
y" @) = (8w+f6‘y) 8$2+8m8y+ f@way f( ) +f2

Wenn man nun die partiellen Ableitungen durch p = 8z, q= gi , T = 88 z’;, s = 8‘15;, t= gy’; ersetzt, so erhilt man

den folgenden {ibersichtlichen Ausdruck fiir die Taylorentwicklung an der Stelle = zo + h :

1 1
§=y0+h'f0+§(po+fo'l10)+6(T0+p0'(I0+2f0'80+f0'qg+f02'to)+

Fiir Approximationszwecke ist es ausreichend die ersten beiden Glieder der Taylorentwicklung zu betrachten. Wenn
man das Integrationsintervall h in infinitisimal kleine Teilintervalle der Breite h;, i = 1..00 unterteilt, so kann man auf
diese Weise den Funktionswert der Funktion g () an der Stelle x = o + h iterativ bestimmen. Der Rechenaufwand
kann durch Beriicksichtigung hoéherer Glieder der Taylorentwicklung zwar verringert werden, jedoch erhoht sich

dabei die Komplexitit der Funktionen.
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f(@o+h,yo+hfo)

Yo+hfo [TTT T T TTT oo oTooooooo oo ‘
' gesuchte Integralkurve

Y2 s T :

7 A

I R e !

(@0, %)

g T+ ih I0+h

Abbildung 2.1: Prinzip des Verfahrens nach Runge

2.1.3 Runge-Kutta-Verfahren

Eine andere Alternative ergibt sich, wenn angenommen wird, daf bspw. die Werte yo, y1, y2 der Funktion g (x) an
den Stellen xg, o + %h und z¢ + h vorliegen. Mit diesen Werten folgt mit der Prismaregel® :

roth h 1
=g [ S@wden g (£G4 (204 ghon ) + 1 ot o) 2.)

Die in Wirklichkeit, bis auf yo, unbekannten Funktionswerte von g (x), werden mittels einer nach Runge bezeichne-

ten Methode wie folgt approximiert:

- 1
Y1)y =Yo + Ehfo

Y2 R Y2 = Yo + hf (xo + h,yo + hfo)

Eingesetzt in (2.1), die gendherte Gleichung fiir k, ergibt sich dann

h 1 1
k~ 5 (fo +4f (ﬂfo + ih,yo + §hf0) + f(wo+ h,yo + hf (xo + h,yo + hfo)))
Hierbei wird k iterativ Uber )
k=~ E(kl +4k‘4+k3)
mit
ki = hfo, k2 = hf (zo + h,yo + k1), ks = hf (zo + h,yo + k2) und ks = hf (zo + $h,yo + 3k1)

bestimmt. Je nach Zahl und Wahl der Approximationen fiir y;, kann das Verfahren abgedndert werden. Die
Abbildung 2.1 gibt das Prinzip des Verfahrens nach Runge wieder.

IFiir Runge-Kutta-Verfahren hoherer Ordnung findet die Simpsonsche Regel als Verallgemeinerung der Prismaregel Verwendung.
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2.1.4 Verallgemeinerung des Runge-Kutta-Verfahrens auf héhere Ordnungen und
Systeme von Differentialgleichungen

Wie leicht zu erkennen ist, ldfst sich dieses Verfahren allgemeiner darstellen mit ¥ = yo + k, wobei sich & als eine
Funktion der Integrationsweite h und einer diskreten Ndherungsfunktion, die im weiteren mit ® bezeichnet wird,
darstellen 148t . Fiir ® 2 gilt:

(I).Z'yg,hf Zc] 372107 )

Es werden dabei von f und h unabhingige Zahlen a;, bj;, c1,¢; mit [ = 1,...,5 — 1 und j = 2,...,m unter der
j—1

Voraussetzung der Bedingungen b;; = a; und ¢m = 1 so bestimmt, daft die Beziehungen
g gung j j g
i=1

-1
k; (z,90) = f <£L‘ +ajh,yo+h- (Z bﬁkj))
=1

fiir j =1, ...,m und

h- ek

j=1
eine moglichst hohe Konsistenzordnung ergeben. Da diese Ndherung iiber die Approximation der Funktionswerte

y; nicht zu einer exakten Losung fithren kann, wird das Integrationsintervall, wie bereits bei der Integration {iber
Reihenentwicklung erwihnt, in Teilintervalle h,, eingeteilt. Auf diesem Weg erhilt man das Ergebnis iiber

Yi = Yi— 1+h21 ch yz 1)
7j=1

fiir i = 1, ..., (# der Iterationen).

Das Verfahren wird auf Systeme von Differentialgleichungen iibertragen, indem man fiir die Koeffizienten k eine
Matrix ansetzt, in der fiir jede Gleichung des Systems eine Spalte sukzessive in den Iterationsschritten bestimmt

wird.

2.2 Realisierung eines Programms zur Berechnung algebraisch vorlie-
gender Differentialgleichungssysteme nach dem Runge-Kutta-Verfahren

7. Ordnung

Fiir die Realisierung unter MATLAB 5.0 wird, wegen des bendtigten Zugriffs auf algebraische Objekte die symboli-
sche Toolbox von MATLAB verwandt. Diese beruht auf einem MAPLE Kern und erméglicht es, das Programm als
Funktion zu realisieren, welche symbolische Vektoren als Eingabewerte verarbeiten kann. Die Berechnung erfolgt
nach dem im vorigen Abschnitt beschriebenen Verfahren, wobei die Zahl der Iterationen vorgegeben werden muf,
da keine automatische Schrittweitensteuerung implementiert wurde. Der Aufruf der Funktion (Abb. 2.2 zeigt ein
Fluftidiagramm) von der MATLAB Eingabeaufforderung geschieht iiber:

2siehe hierzu ARINGER. 1994
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z=RK7multi(DGLSYS,i,h,Naeherung,x0) ;

Dabei bezeichnet DGLSYS einen symbolischen Spaltenvektor der Form sym(’ [y1;y2;...;yn]’), der die rechten
Seiten der Differentialgleichungen enthélt. Die Variable i steht fiir die Zahl der Iterationen, h bezeichnet die Inte-
grationsweite, Y ist der symbolische Vektor der Variablennamen in der Form sym(’[Y1;Y2;...;Yn] ), Nacherung
ist ein Zeilenvektor mit den bekannten Werten der Variablen an den Niherungstellen und x0 bezeichnet den Start-
wert der unabhéngigen Variabeln z.

Beispiel: Es sei folgendes Differentialgleichungssytem erster Ordnung gegeben:

%zm—l—ﬁ
L=y-vz

Fiir dieses sind y und z an der Stelle z = 0.3, fiir diejenige partikuldre Losung zu pridizieren, fiir die gilt

y = 0.5 ;=02
und
z2=0 |w=0.2

Der Funktionsaufruf lautet dann:
z=RK7multi(sym(’ [x+sqrt(z);y-sqrt(z)]’),1,0.1,sym(’ [y;2]’),[0.5,0],0.2);
(fiir i kann hier 1 angesetzt werden) Es ergibt sich

0.5384
z = 0.0376

<
Il

2.3 Losung der 1. geodatischen Hauptaufgabe mit Hilfe der Funktion
RK7multi.m

2.3.1 Beschreibung der theoretischen Grundlagen

ARINGER (1994) beschreibt die Moglichkeit der Losung der geodatischen Hauptaufgaben {iber eine Darstellung
der Differentialgleichungen der geodatischen Linie in kartesischen Koordinaten. Der Grund fiir deren Einfiihrung
liegt in den Problemen, die sich aufgrund von Singularitdten bei der Parameterdarstellung regulérer Flachen er-
geben. Werden beispielsweise geographische Breite und geographische Lange als Parameter zur Darstellung einer
Einheitskugel verwendet, so ergeben sich diese in den Polen. Eine andere Moglichkeit bietet die Wahl von Monge-
schen Flichenstiicken, wobei hier Fallunterscheidungen zu treffen sind, da sonst Singularitdten an den begrenzenden
Grofikreisen auftreten kénnen. Diese Problematiken lassen sich ebenfalls auf das Ellipsoid iibertragen. Dort kommt
es dann in der Ndhe der Unstetigkeitsstellen zu numerischen Unsicherheiten bei der Berechnung der geodatischen
Hauptaufgaben iiber Quadraturverfahren. Als Losung schligt ARINGER die Wahl der impliziten Form

Q (z1,%2,23) =0
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=

Funktionsaufruf mit Ubergabe der Paramete

é

Definition der  ay, bj;, ¢, ¢

!

Iterationen Uber die einzelnen Teilintervalle h,,

i=1:iterationen

;

Iteration fur einzelne Koeffizienten £k
j=1:13

i

Berechnung des Wertes der unabhangigen Variable

&

Iteration fur n Gleichungen

u=1l:n

!

1=1:i-1

!

j—1
Berechnung der ]Z bijk;
=1

!

Berechnung der Approximationswerte y;

-

Auswertung der Geichungen an den Approximationssteller

T

j=1:12
m

Berechnung der Y- c;k;
j=1

v
Berechnung der Lésungen der Teilintervalle

!

Schritt ins nachste Teilintervall

!

Ausgabe der n Ergebnisse

Abbildung 2.2: Fluffdiagramm der Funktion RK7multi.m
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der Flichendarstellung in kartesischen Koordinaten vor. Uber die Bestimmungsgleichung der geoditischen Linie

%x

@ZK/‘DZKZ”'H

mit der Normalkriimmung

-1 1 (0z1\> 1 (0z2\? 1 [dxs)?
A S— _2(ﬂ) +_2(ﬂ) +_2(£)
s | o3, o3 \a 0s a? \ Os b2 \ Os

und dem zugehorigen Normalenvektor G = grad@ = %ei, wobei n = ﬁ, leitet er das folgende Differentialglei-

chungssystem her:

DY, =Y,
_ -Yi 2 2 | a®y2
DY, = Y24Y2 425V (Y2 YO b2Y6)
e (2.2
_ -Y: 2 2, a2 2) 2.2
DYy = Y24V 42r Y2 (Y2 YO+ Y
DY5 =Ys
— ~Ys a2 2 2 4 a2 2)

Die Differentiale sind mit DY;, die Variablen mit Y; bezeichnet. Y; 3 5 stehen hierbei fiir die kartesischen Koordinaten
des Anfangspunktes, die drei iibrigen Variablen bezeichnen die Komponenten des Tangenteneinheitsvektors im
Anfangspunkt, die zunéchst iiber die gegebenen Grofien zu berechnen sind. Wie bereits erwéhnt, besitzt die implizite
Art der Flachendarstellung und damit das aus dieser abgeleitete Differentialgleichungssystem, den Vorteil, daf es
frei von Singularitdten ist. Den meisten Verfahren, die bei der numerischen Integration der ersten Hauptaufgabe

Verwendung finden, liegt das, in der Literatur meist angegebene, Gleichungssystem

du _ _1
35 = = CO8 (@)
v _ _ 1 :
55 = 7= +sin(a) (2.3)

da _ 3911)1 3932 A

s 2:911/922 cos (a) T 2.g224/9m1 Sin (a)

zugrunde. Fiir das Linienelement in ellipsoidischen Koordinaten gilt
ds* = M? - dp* + N? cos® () - d)\? (2.4)

mit dem Meridiankriimmungshalbmesser M = 7 und dem Querkriimmungshalbmesser N = . ¢ = % bezeichnet

den Polkriimmungshalbmesser und es gilt V' = /1 + €2 cos? (¢), mit der zweiten numerischen Exzentrizitit e’ =

—V“Qb’bQ Fiir den kovarianten Metriktensor folgt dementsprechend

i M? 0
lgii] = 0 NZcos?(p)

Eingesetzt in (2.3) ergibt sich folgendes Differentialgleichungssystem erster Ordnung fiir die geodétische Linie auf
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dem Rotationsellipsoid:

7 3
_‘6‘?93 = VIteTcosTly) Q:OSQ(‘F) cos ()
/ 2 2
gﬁ = lt-iosc(ows) “ sin (o) 25)

Sa y/1+e'? cos(<,0)3 .
== . tan () sin (@)

Dieses Gleichungssystem kann zur Losung der 1. geodétischen Hauptaufgabe direkt integriert werden, wobei hier
jedoch auf die schon erwihnten Singularitdten in den Polen, hervorgerufen durch die Wahl der ellipsoidischen
Koordinaten, zu achten ist.

2.3.2 Aufruf des Losers iiber die graphische Benutzeroberfliiche guiawp_graphik.m

Mit MATLAB wurde eine graphische Benutzerschnittstelle entwickelt, die die Berechnung der 1. geodétischen
Hauptaufgabe in kartesischen Koordinaten auf einem vorgegebenen Rotationsellipsoid erméglicht. Dabei wird zur
Losung des Gleichungssystems (2.2) {iber eine Anfangswertaufgabe auf die zuvor eingefiihrte Funktion RK7multi
zuriickgegriffen. Der Funktionsaufruf lautet in diesem Fall:

z=RK7multi(DGLSYS,schritte,s,Y, [x1 t(1) x2 t(2) x3 t(3)],0);

mit den Variablen

e DGLSYS: Symbolische Zeilenmatrix mit den rechten Seiten der Differentialgleichungen (2.2). (kann dem Quell-

text entnommen werden)

Y=sym(’ [y1;y2;y3;y4;y5;y61°);

schritte bezeichnet die vorzugebende Zahl der Iterationen

s entspricht dem Integrationsintervall

[x1 t(1) x2 t(2) x3 t(3)] gibt die Komponenten des Anfangsvektors und des Tangentenvektors im An-
fangspunkt an

Es sei hier zu bemerken, dafs in DGLSYS die Konstantenbezeichner vor Aufruf der Funktion noch durch ihre nume-
rischen Werte zu ersetzen sind. Die in Abb. 2.3 dargestellte Benutzerschnittstelle (G (raphical)U (ser)I(nterface))
kann durch Aufruf der Funktion guiawp_graphik.m an der MATLAB Eingabeaufforderung gestartet werden. Die
Felder fiir die Anfangswerte und die vorzugebenden Ellipsoidparameter lassen sich editieren, und die Funktion
geo_haupt_1.m, welche die Ubergabe der Daten zwischen dem GUI und dem Script RKF7multi.m iibernimmt,
wird iiber den Button ’Berechnung Starten’ aufgerufen. Das Programm selbst bietet zum einen die Mdglichkeit
eine konstante Zahl von Iterationen vorzugeben, zum anderen kann aus verschiedenen Genauigkeiten ausgewihlt
werden. Mit der Ableitung, des fiir diese Aufgabe empirisch zu bestimmenden Zusammenhangs zwischen Genau-
igkeit und vorzugebender Zahl der Iterationen, beschaftigt sich der folgende Abschnitt. Hier sei zu erwdhnen, daf
man durch Wahl des Schalters ‘Genauigkeit auswdihlen’ unter 9 verschiedenen Genauigkeiten der Losung der An-
fangswertaufgabe wihlen kann, und mit Ubernahme dieser Wahl, die Zahl der bendtigten Iterationen automatisch,
nach Auswerten der Iterationsfunktion, in die Oberfliche iibernommen werden. Auf die Bedeutung der rechts im
Fenster angeordneten Schalter ’Ephemeridenberechnung’ und ’Zurick zur Hauptauswahl’ wird in den folgenden
Abschnitte noch eingegangen. Die Rechenzeit® des Programms (0.17-2”/AWP) liegt in der Regel beim 2- bis 9-
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Abbildung 2.3: GUI fiir Losung des Anfangswertproblems

Bendtigte CPU-Zeit fur die Lésung des AWP in Abhangigkeit der Strecke s
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Abbildung 2.4: Rechenzeit in Abhangigkeit von der Entfernung
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Zahl der benétigten Iterationen in Abhangigkeit von der Lénge der geod. Linie
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Abbildung 2.5: Tterationen in Abhéngigkeit von der Integrationsweite s

fachen eines kompilierten FORTRAN-Programms. Verkiirzen l4ft sich diese, indem man entweder vorhandene
FORTRAN- bzw. C-Funktionen iiber ein API (Application Program Interface) in die MATLAB-Routinen einbin-
det oder einen MATLAB-Compiler wie MATCOM oder MIDEVA* benutzt, der die m-Scripte in C++ {ibersetzt

und dann compiliert.

2.3.3 Ableitung einer empirischen Funktion zur Bestimmung der Zahl der nétigen

Tterationen

Da bei der Realisierung des Programms auf eine automatische Schrittweitensteuerung® verzichtet wurde, ist es
wichtig, die fiir eine vorgegebene Genauigkeit der Endpunktkoordinaten noétige Schrittweite, bzw. die Zahl der
Iterationen in Abhingigkeit der Integrationsweite des Runge-Kutta-Verfahrens, empirisch abzuleiten. Uber ein
Hilfsprogramms wird dabei die Zahl der Iterationen solange erhoht, bis sich die Endpunktkoordinaten der Losung mit
n + 1 Iterationen von denen der Losung mit n Iterationen nur noch um eine vorgegebene Schranke e unterscheiden.
Setzt man beispielsweise als Schranke fiir die Genauigkeit der kartesischen Koordinaten der Endpunkte einen Wert
von 0.5mm/Komponente an, so ergibt der in Abb. 2.5 dargestellte, wie zu erwarten lineare, Zusammenhang
zwischen der Anzahl der benétigten Iterationen und der Linge der geoddtischen Linie. Im weiteren bestehen
Abhingigkeiten der nétigen Iterationen von der Abplattung, dem Azimut sowie von der geforderten Genauigkeit e.
In den oberen beiden Graphen der Abb.2.6% ist gut zu erkennen, daR der Einflu der Abplattung auf die Iterationen
bei Integration in Polrichtung am stérksten ist, wohingegen bei Integration in Aquatorrichtung diese Abhingigkeit
nicht mehr auftritt. Dies war von vornherein klar, da mit geringerem Azimut die Abweichung der geodétischen Linie
von einem ebenen Kreisabschnitt immer grofer wird. In Aquatorrichtung entspricht die geoditische Linie dann dem

3siehe hierzu Abb. 2.4

4Weitere Informationen zu den Compilern und freie Evaluations-Lizenzen sind erhltlich unter http://www.mathtools.com.

5Moglichkeiten zur Implementierung einer solchen sind in ARINGER. 1994 aufgefiihrt.

6Bei der Berechnung wurde hier davon ausgegangen das der Anfangspunkt auf dem Aquator liegt. Das Azimut wird von Norden
nach Osten als positiv angenommen. Der hier noch nicht variierende Parameter ist die Genauigkeit ¢, welche fiir die Berechnung der
Graphen mit 0.0005m angesetzt wurde.
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Abbildung 2.6: Abhingigkeiten von Azimut und Abplattung

Aquator. Aufgrund der Tatsache, daff die maximale Zahl der benétigten Iterationen in Polrichtung auftritt, wird
bei der weiteren Ableitung einer Naherungsfunktion immer von dieser Integrationsrichtung ausgegangen und somit
der Einfluf des Azimuts unter Inkaufnahme langerer Rechenzeiten unberiicksichtigt gelassen. Die beiden unteren
Graphen zeigen zum einen den Einflufl der Abplattung auf die Funktion I (s), die im weiteren die Abhéngigkeit der
notigen Iterationen von der Integrationsweite s beschreibt, sowie den Einfluft einer variierenden Integrationsweite

auf die Funktion I (A), durch die der Zusammenhang zwischen den Iterationen und dem Azimut A erfafit wird.

Der nachste Schritt besteht darin die Einfliisse der iibrigen 3 Parameter, Integrationsweite s, Abplattung f und
geforderte Genauigkeit ¢ in einer Funktion I (s, f, ) zusammenzufassen. Es bietet sich dabei an, die Einfliisse von f
und ¢ auf den in Abb. 2.5 dargestellten linearen Zusammenhang I (s) zu untersuchen. Im ersten Graphen von Abb.
2.7 sind zunéchst verschiedene I (s) Kurven fiir unterschiedliche Abplattungswerte f in [%] dargestellt. Darunter
folgt derselbe Graph fiir variierende e (0.0005, 0.005, 0.05, ..., 50000 m ). Aus diesen beiden Abbildungen folgt, dafs
die Einfliisse der anderen beiden Parameter auf I (s) nichts an deren linearer Eigenschaft &ndern. Im weiteren sind
daher die Verdnderungen der Parameter a{(s) und aé(s) des Polynoms erster Ordnung I (s) bei Anderung von f
und ¢ zu untersuchen. Fiir die Abhangigkeit der Steigung af(s) der Geraden I (s) von der geforderten Genauigkeit
€ (vgl. Abb. 2.8), ergibt sich, nach Ermittlung der a{(s) iiber lineare Regression, der folgende logarithmische
Zusammenhang :
ai® () = 4.44. 1074 . 70126

Die Abhingigkeit des y-Achsenabschnittes der I (s) Kurven kann dem 2. Graphen in Abb. 2.8 entnommen werden.

Im Folgenden sei die Anderung von I (s) bei Variation von f, unter Festhalten von &, mit dI (s, df, <) bezeichnet.
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Abbildung 2.7: Lineare Zusammenhénge zwischen I (s) und f sowie €

[e[m[=] 0.0005 | 0.005 | 005 | 05 | 5 [ 50 [ 500 | 5000 | 50000 |
az | 0.000024 | 0.000017 | 0.000013 | 0.000006 | 0.000013 [ 0.000011 | 0.000006 | 0.000004 | 0.000003
as | -0.00112 | -0.00080 | -0.00064 | -0.00026 | -0.00082 | -0.00059 | -0.00023 | -0.00013 | -0.00014
ar | 0.04785 | 0.03450 | 0.02811 | 0.01695 | 0.02392 | 0.01656 | 0.00921 | 0.00845 | 0.00855
ag | 0.71968 | 0.55341 | 0.41451 | 0.32873 | 0.21614 | 0.16594 | 0.12830 | 0.08221 | 0.04088

Tabelle 2.1: Polynomkoeflizienten

Der Koeffizient a{(s) (f) 1aBt sich durch ein Polynom dritten Grades in f approximieren:
al® (f) = 1073 (0.7431 + 0.0447 + 0.001 2 + 0.0002 /%) (2.6)

Abb. 2.9 zeigt nun, analog zu Abb. 2.8, die sich fiir diesen Fall ergebenden Graphen. Man kann zur Ableitung
der Funktion I (s, f,e) 2 Wege beschreiten, zum einen kann dI (s,df,e = const) unter Variation von € untersucht
werden, zum anderen ist der umgekehrte Weg moglich. Aufgrund der Einfachheit der Polynome 3. Grades wird der
erste Weg beschritten, und 4 Funktionen, welche mit d*I (s, df, de), fiir k = 1, ..,4 bezeichnet werden, lassen sich aus
den Variationen der in (2.6) eingefiihrten Koeffizienten des Polynoms unter Anderung von & ableiten. In Abb. 2.10
sind wiederum analog zu Abb. 2.9 die sich ergebenden Steigungsfunktionen sowie die y-Achsenabschnittsverlaufe
fiir verschiedene € dargestellt. Die daraus folgenden Koeflizienten der angesetzten Polynome konnen der Tabelle 2.1

entnommen werden.

Abb. 2.12 zeigt eine graphische Darstellung der a; (¢) aus Tabelle 2.1. Wie man dieser entnehmen kann, lohnt es
aufgrund der Spriinge nicht, die sich ergebenden Zusammenhénge funktional zu approximieren. Die im Programm
implementierte Iterationsfunktion wird folglich fiir die diskreten Werte ¢, wie sie der Tabelle 2.1 zu entnehmen sind,
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Abbildung 2.10: Steigungs- und y-Achsenabschnittsfunktion in Abh#ngigkeit von der zu fordernden Genauigkeit
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Abbildung 2.11: Darstellung der Approximationspolynome
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Abbildung 2.12: Graphische Darstellung der Polynomkoeffizienten

bestimmt. Die Moglichkeit der Wahl der Genauigkeit zwischen 0.5[mm] und 50[km] reicht fiir die Anwendung des

Programms vollkommen aus.

Nach diesen Ergebnissen der Untersuchung der Iterationsfunktion erfolgt die automatische Berechnung der, fiir
eine vorgegebene Genauigkeit bendtigten, Zahl der Iterationen des Differentialgleichungslosers, indem zunachst mit
dem zu erreichenden Genauigkeitswert aus Tabelle 2.2 die zugehdrigen Polynomkoeffizienten bestimmt, dann der
Funktionswert dieses Polynoms an der Stelle der gegebenen Abplattung ermittelt und mit diesem die Funktion I (s)
ausgewertet wird. Wie aus Abb. 2.10 unten ersichtlich, ist es angebracht den y-Achsenabschnitt, der scheinbar
keinem funktionalen Zusammenhang folgt ,als Konstante mit dem Wert 2 einzufiihren. Damit ergibt sich folgende

Iterationsfunktion:
I(s, f,e) = ceil ((ao () + a1 (€) f + az () f> + a3 (¢) f7) - s + 2) (2.7)

(Diese Funktion wurde ausreichend verprobt.”)

2.3.4 Diskussion der mit dem Programm guiawp_graphik.m zu erzielenden Ergebnisse

Um die Leistungsfahigkeit des Programms zu testen, werden die in ARINGER (1994) aufgefiihrten Beispiele berech-
net. In Tabelle 8 seiner Dissertation vergleicht er die Ergebnisse verschiedener Integratoren. Da das hier benutzte
Programm nach dem Runge-Kutta-Verfahren 7. Ordnung arbeitet, werden die Ergebnisse mit denjenigen vergli-
chen, die ARINGER nach dem, im weiteren mit RKF7 abgekiirzten, Runge-Kutta-Fehlberg-Verfahren 7. Ordnung

"Es sei hier noch einmal bemerkt, daf§ diese Funktion nur fiir die diskreten Werte ¢ aus Tabelle 2.1, sowie fiir Abplattungen bis 50%
gilt. Ebenso wird der lineare Verlauf der Funktion I (s) auch fiir Entfernungen iiber 20000km angenommen.
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ermittelte. Der Unterschied der beiden Verfahren liegt in der, beim RKF7 Verwendung findenden Fehlerschiitzung®
nach FEHLBERG. Bei geod_haupt_1.mist diese Fehlerschéitzung durch die im vorigen Abschnitt abgeleitete empi-
rische Tterationsfunktion ersetzt worden, so dafs das Ergebnis ebenfalls nach Vorgabe einer gewiinschten Genauigkeit
ermittelt werden kann®. in Tabelle 2.2 sind nun die Ergebnisse des RKF7'° zum Vergleich in der letzten Spalte
angeordnet. Bei der Berechnung iiber geod_haupt_1.m wurde zunichst die Zahl der Iterationen auf 35 festgelegt.
Die Werte in den Klammern enthalten im Vergleich hierzu die Anderungen, die sich nach Vorgabe einer Genauigkeit
von € = 0.0005 [m] iiber die Auswertung der empirischen Iterationsfunktion zeigten. Die Zahl der sich fiir diese
Genauigkeit nach (2.7) ergebenden nétigen Iterationen ist zusétzlich angegeben. Der Tabelle kann entnommen
werden, daft die Ergebnisse fiir die Koordinaten sich bei Langen bis zu 5000 km nicht unterscheiden. Werden die
Entfernungen jedoch grofer treten hier Abweichungen im Bereich einiger zehntel Millimeter auf. Der Azimut im
Endpunkt wird nur fiir s < 1000km identisch erhalten. Fiir s > 1000km treten Abweichungen im Bereich von
10~5 Sekunden auf. Da Abweichungen in dieser GroRenordnung auch bei Aringers Vergleich der verschiedenen
Integratoren vorkommen!!, ist es schwierig auf deren Ursache zu schliefen. Ein mdglicher Grund kénnte in der un-
terschiedlichen GréRenordnung der Anfangswerte liegen, die jedoch durch eine Anderung der Skalierung umgangen

werden kann.

2.4 Losung der 2. geodatischen Hauptaufgabe nach dem Schieliverfah-

ren

2.4.1 Prinzip des Schiefiverfahrens

Wie im vorigen Abschnitt gezeigt, lassen sich nichtlineare Anfangswertprobleme auf einfache Weise durch numeri-
sche Integration 16sen. Bei Randwertaufgaben ist dies im allgemeinen nicht der Fall, da es sich meist um Probleme
mit freiem Rand, d.h. um Probleme handelt, bei denen das Integrationsintervall nicht vorgegeben, sondern Teil
der Losung des Randwertproblems ist. Betrachtet man das Gleichungssystem (2.2) so trifft dies hier ebenfalls zu.
Die gesuchte Entfernung s tritt als Integrationsvariable auf. Eine Moglichkeit der Losung dieses Problems besteht
darin, ein anderes gleichwertiges System aufzustellen, in dem das Integrationsintervall einer neu einzufiihrenden
unabhéngigen Variablen gegeben ist. ARINGER stellt ein solches System fiir die Differentialgleichung der geodéti-
schen Linie in kartesischen Koordinaten in seiner Dissertation'? vor.

Meist werden solche Systeme jedoch nach einem als empirisch zu bezeichnenden Verfahren, dem s.g. Schieffverfah-
ren gelost. Voraussetzung fiir dieses Verfahren sind gute Naherungswerte fiir die Losung des Randwertproblems.
Im ersten Schritt wird mit den Niherungswerten eine Anfangswertaufgabe gelost. Im Fall der zweiten geodéti-
schen Hauptaufgabe sind die Koordinaten des Anfangs-, sowie die des Endpunktes gegeben. Man benétigt dann
sowohl Naherungswerte fiir die Tangentenrichtung an die geodéitische Linie im Anfangspunkt, als auch fiir die zu
bestimmende Entfernung. Nach Berechnung des AWP’s kénnen die Sollwerte der Endpunktkoordinaten mit der Lo-

8Die Schitzung erfolgt iiber 2 Niherungen der Losung, welche jeweils iiber Diskretisierungsverfahren der globalen Fehlerordnungen ¢
und g+ 1 gewonnen werden. Praktisch wird beim RKF7 ein von Fehlberg angegebener Fehlerterm LE = ;Tlo (k1 + k11 — k12 — k13) " hn
angesetzt, wobei k12 und k13 aus zwei weiteren Auswertungen der Differentialgleichung stammen. Damit ergibt sich der Fehlerterm aus
dem Vergleich eines Verfahrens 8. mit dem eines 7. Ordnung. Uber diesen wird bei ARINGER (1994) die automatische Schrittweiten-
steuerung implementiert.

9Dies fiihrt zu einer geringfiigigen Verkiirzung der Rechenzeit im Vergleich zu den Programmen mit Fehlerschitzung.

10Aus ARINGER (1994), Tabelle 8, wobei hier zu bemerken sei, daR fiir diese Berechnung die Vorgabe der Genauigkeit der kartesischen
Koordinaten mit € = 0.001 [m] angegeben wurde.

11 Bei Vorgabe derselben geforderten Genauigkeit.

12giehe Gleichung (6.61)
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| Anfangspunkt | Ergebnisse nach guiawp_graphik.m | Ergebnisse nach RKF7 |

Beispiel 1
1 [m 4045649.321 4110102.0794 (*.*) 4110102.079
s [m 713357.130 759450.1051 (*.*) 759450.105
3 [m 4862882.427 4801881.8161 (*.*) 4801881.816
Azimut 160° 160°21’24.925395” (*.*) 160°21°24.925395”
s [m] 100000
Tterationen 3
Beispiel 2
1 [m 4892928.819 4202463.8663 (*.*) 4202463.866
T2 [m 0 172937.6598 (*.*) 172937.660
z3 [m 4078053.805 4778979.7695 (*.*) 4778979.770
Azimut 10° 11°39°15.778910” (*.*) 11°39’15.778910”
s [m] 1000000
ITterationen 3
Beispiel 3
1 [m 2662030.662 -2185590.6824 (*.*) -2185590.682
T2 [m 469387.829 13443.8838 (*.%) 13443.884
z3 [m 5757839.704 5972056.2814 (*.*) 5972056.281
Azimut 5° 173°48°43.328944” (*.*) 173°48’43.328938”
s [m] 5000000
Tterationen 6
Beispiel 4
1 [m 1894899.301 3786572.2845 (*.*) 3786572.285
o [m -1094020.622 -4701166.891 (*.8909) -4701166.890
z3 [m 5971179.947 -2053338.1932 (*.*) -2053338.194
Azimut 200° 187°07°17.004099” (*.*) 187°07°17.004102”
s [m] 10000000
Tterationen 10
Beispiel 5
1 [m 4045649.321 -757346.0989 (*.*) -757346.098
o [m 713357.130 2808023.9817 (*.9816) 2808023.982
z3 [m 4862882.427 -5657616.2719 (*.*) -5657616.272
Azimut 140° 114°46°41.483865” (*.483863) 114°46°41.483900”
s [m] 15000000
Tterationen 14
Beispiel 6
1 [m 1405039.264 -1477765.6895 (*.6894) -1477765.690
o [m -3860313.652 3782381.2759 (*.2758) 3782381.275
z3 [m -4862882.427 4902141.1762 (*.1760) 4902141.176
Azimut 310° 230°48704.1889954 (*.1889935) 230°48”04.188997
s [m] 19900000
ITterationen 17

Tabelle 2.2: Beispiele fiir die 1. geodatische Hauptaufgabe

49
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sung verglichen und eine Abweichung bestimmt werden.'®> Um das Prinzip mathematisch zu verwirklichen, werden
homogene Randbedingungen der Form R (y, (L{),¥) = 0 aufgestellt. Hierbei bezeichne y, (L{) die Losung der
Anfangswertaufgabe mit dem Niherungsvektor L in der i — ten Iteration und y die vorgegebenen Randwerte fiir
das RWP (geg. Endpunktkoordinaten). Im Falle der zweiten geodatischen Hauptaufgabe ergeben sich die folgenden

Randbedingungen:
Ry z(L§) -2 0
Li) -7
o y(f / -|° (2.8)
R z(L§) — 2 0
Ry VB (L) +8 (L)) +8 (L) -1 0
F T
z
. 4 ~
mit y, = undy=| 7y
t1 ~
z
to
L t3 -

Als 4. Randbedingung wird der Betrag des Tangenteneinheitsvektors eingefiihrt. Damit ist (2.8) eine nichtlineare
Gleichung in L}, die mit Hilfe des allgemeinen Newtonverfahrens'? iterativ geldst werden kann. Die Bestimmung

der Niherungswerte fiir die ¢ + 1 te Iteration erfolgt iiber:

Lt =L - d’ (2.9)
mit den Verbesserungen
i IR - i
di = (6_L0 L6> R (L) (2.10)

Da die Differentation in (2.10) nicht explizit durchgefiihrt werden kann, muf an dieser Stelle der Differentialquotient

durch den Differenzenquotienten ersetzt werden.

Im Startvektor L, welcher durch eine geeignete Niherung zu ermitteln ist, wird die j -te Komponente um einen noch
festzulegenden Wert AL ; variiert und erneut eine Anfangswertaufgabe berechnet. Nach der Iteration iiber j erhilt
man damit ein lineares Gleichungssystem fiir die Ermittlung des Vektors der Verbesserungen d!. Die Startwerte fiir
den i+ 1’ten Schritt erhélt man iiber (2.10). Nach einer erneuten Berechnung des AWP’s kann ein Abbruchkriterium
() derart eingefiigt werden, dafs falls die euklidsche Distanz des berechneten Endpunktes vom Sollwert eine Schranke
¢ unterschreitet, das Schiefverfahren beendet wird. Die Abb. 2.13 zeigt das Prinzip des Schiefiverfahrens am Beispiel
der 2. geoditischen Hauptaufgabe. Es sind im weiteren noch geeignete Niherungswerte fiir den Startvektor L3 und
die Wahl der Gréfenordnung der Variationen der Niherungsvektoren sowie deren Anderungen in der Tterationsphase

13Um Unklarheiten die im Vergleich mit Aringers Arbeit auftreten kénnen zu vermeiden, sei erwihnt, daf hier nur das normale
Differentialgleichungssystem zur Losung der Anfangswertaufgabe Verwendung findet. Der Schritt den Aringer beschreibt um, wie er es
nennt, eine Randwertaufgabe mit freiem Rand auf eine gewohnliche Randwertaufgabe zuriickzufiihren, scheint mir unnétig, auferdem
bringt das auf diese Weise abgeleitete Differentialgleichungsystem, welches mit dem des AWP’s bis auf eine Erweiterung mit der
Entfernung s identisch ist, keine brauchbaren Ergebnisse.

14Die Grundlage dieses Verfahrens folgt aus einer nach dem linearen Glied abgebrochenen Taylorentwicklung nach f (z + h) = f (z) +
f' (z) - h. Unter der Vorraussetzung, daf f (z + h) = 0 ergibt sich die gesuchte Grofe h aus —h = %f (z). Die Gleichung 2.10 ist
dann die Verallgemeinerung fiir Funktionen von n-Veranderlichen.
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Losung der variierten AWP’s

,,,,,,,, - Differenzen zum unveranderten AWP
- Abweichungen Sollwert - Lésung der AWP’s
____= Lb6sungdes 1. AWP’s

Abbildung 2.13: Prinzip des Schiefiverfahrens

zu bestimmen. Bei den Grofienordnungen der Variationen handelt es sich um empirisch abzuleitende Werte, auf die
im Hinblick auf den Umfang der Arbeit, hier nicht weiter eingegangen werden soll.

2.4.2 Berechnung der Niaherungswerte
2.4.2.1 Berechnung der Niherungswerte fiir den Tangentenvektor im Anfangspunkt

Eine geeignete Niherung fiir den Tangentenvektor an die geoditische Linie stellt die Projektion des rdumlichen
Verbindungsvektors von Anfangspunkt und Endpunkt in die Tangentialebene der Fldche im Anfangspunkt dar.

Hierzu mufs zundchst der Normalenvektor n, der Fliche im Anfangspunkt A bestimmt werden. Mit der Normierung

ergibt dich dieser zu

Ng = Pq

TR RS S

Der orthogonale Abstand des Endpunkts von der Tangentialebene im Anfangspunkt p, bestimmt sich aus dem
Skalarprodukt

T
Tp — Tq
b1 = Y — Ya ‘N,
Zp — Za

und der Tangentenvektor selbst {iber
_ (v —%a) +|pi] 14
|(Xb — Xa) + [pL] - 0|

Die Komponenten dieses Vektors bilden die Ndherungswerte fiir den ersten Schritt des Schiefiverfahrens.
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Abbildung 2.14: Skizze zur Bestimmung des Tangentenvektors an direkte Verbindung von A und E

2.4.2.2 Berechnung der Nidherungswerte fiir die Linge der geoditischen Linie zwischen Anfangs-
und Endpunkt

Die einfachste Moglichkeit besteht in der Anndherung der geoditischen Linie {iber einen Kreisabschnitt. Dazu
werden aus den kartesischen Koordinaten nach bekannten Verfahren die ellipsoidischen Koordinaten ¢g, Ag, @e, Ae
bestimmt und {iber den Kosinussatz der sphérischen Geometrie, unter Betrachtung der ellipsoidischen Koordi-
naten als Kugelkoordinaten, sowie der Annahme r = %Lb), ein Ndherungswert fiir die Linge der geodétischen
Linie ermittelt. Es zeigt sich, daf diese Ndherung jedoch, aufgrund der lokalen Konvergenz des Schiefsverfahrens,
nur ausreichend ist fiir Strecken bis 5000km, so daf im weiteren die Linge eines Vertikalschnittes als Ndherung
Verwendung findet. Die Vertikalschnittebene wird von n, und t, in A aufgespannt. Um die Berechnung zu ver-
einfachen reicht es aus, das Problem in einem 2-D Koordinatensystem, in dem sich der Vertikalschnitt als ebene
Kurve eindeutig darstellen 14ft, zu betrachten. Ohne ndher auf die Transformation einzugehen, sei erwihnt, daff
der Ursprung des Koordinatensystems in den Anfangspunkt A verschoben wurde, die neue x-Achse in Richtung t,
und die neue z-Achse in Richtung —n, weist. (vgl. hierzu Abb. 2.15) Es ergibt sich die folgende Gleichung fiir die
Vertikalschnittkurve aus der Gleichung des Ellipsoides im gedrehten ebenen System:

J/L'\zbu + 22b33 + 272b13 + 2Tc1 + 22¢c3 = 0

Die Auflésung der quadratischen Gleichung fiihrt zu

sy o CEs ) V @bis : ¢3)? — (b1 + 28¢1) bay 1)
33

und

— (Bb1s + 1) + 1/ (Bbis + 1) — (F2bsg + 22e5) by
bll

(2) = (2.12)
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Abbildung 2.15: Intervallteilung zur Berechnung des Vertikalschnitts
Zur Berechnung der Lange des Verikalschnitts erfolgt eine Einteilung der z-Achse des ebenen Systems gem. Abb.

2.15 in n Teilintervalle dz;. Uber (2.11) werden die zugehérigen Koordinatendifferentiale dz; ermittelt und mit den

erhaltenen Werten dann die Streckendifferentiale ds; = \/dz? + dz? . Die gesuchte Strecke ergibt sich demzufolge

n
szzwdi"\? + dz?
=1

Die Abbildung 2.15 zeigt, daf es numerisch sinnvoll ist, das gesamte Integrationsintervall in 3 Teilintervalle zu

nach

ordnen. Im ersten, sowie im dritten wird Z, im zweiten Z als unabhéngige Variable gewéhlt. Damit findet bei der
Berechnung der Koordinatendifferentiale im zweiten Intervall Gleichung (2.12), in den iibrigen Gleichung (2.11)
Verwendung. Im ersten Intervall erhilt (2.11) das Vorzeichen “+”, im dritten ““. Die Genauigkeit der Berechnung

ist abhéngig von der Zahl n der Teilintervalle d%; bzw. dz;.

Mit dem, auf diese Weise ermittelten Naherungswert fiir die Lange der geodatischen Linie zwischen Anfangspunkt
A und Endpunkt E auf einem durch seine Parameter a und b gegebenem Ellipsoid, kann die 2. geodatische

Hauptaufgabe nach dem Schiefiverfahren geldst werden'®.

2.4.3 Praktische Realisierung eines Programms zur Losung der 2. geoditischen
Hauptaufgabe nach dem Schiefiverfahren

2.4.3.1 Beschreibung der Benutzeroberfliche

Die Vorgehensweise des MATLAB-Programms guirwp_graphik.mzur Berechnung der 2. geodatischen Hauptaufga-
be entspricht weitestgehend den in den Abschnitten zuvor erwéhnten Verfahren. Die Anfangswertaufgaben werden

15 ARINGER beschreibt in seiner Dissertation die Berechnung des Vertikalschnittbogens iiber eine Differentiation von (2.11) und (2.12)
mit anschliefender Integration (vgl. Gleichungen (6.55) und (6.56) seiner Arbeit). Der Sinn dieser Handlungsweise ist mir nicht klar,
da ein konstanter Anteil dadurch wegfillt. Fiihrt man die Integration nach (6.56) formal durch, so ergeben sich nicht die Ergebnisse die
er in seinen Tabellen angibt, sondern man erhélt eine zu kurze Strecke.
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mit RK7multi.m geldst und zusdtzlich wird zu Beginn, um die Intervallteilung bei der Berechnung des Vertikal-
schnitts durchzufiihren, die Linge eines Kreisabschnitts ermittelt. Das zur Bedienung des Programms erstellte GUI
(siehe Abb. 2.17) enthélt Eingabefelder fiir

¢ vorzugebende kartesische Koordinaten des Anfangs- und Endpunktes als Randwerte
e Mafe des zugrundezulegenden Ellipsoides

e Schranke fiir den euklidschen Abstand der ermittelten Endpunktkoordinaten von den vorgegebenen Randwer-

ten als Abbruchkriterium fiir das Schieiverfahren
e die zu wihlende Intervallbreite bei der Berechnung der Linge des Vertikalschnittes

e Grofe der relativen Variationen von L (in der Oberfliche mit dsigma bezeichnet) in der ersten Iteration des
Schiefiverfahrens

e einen Anderungsfaktor fiir die relativen Variationen ALf]j
Ausgegeben werden

o die Ergebnisse der Berechnung des Vertikalschnittes
e die Zahl der bendtigten Iterationen
e der iiber die Kreisabschnittsberechnung abgeschitzte Entfernungsbereich

e die Lange, sowie die Azimute der geodétischen Linie zwischen A und E

2.4.3.2 Beschreibung des Berechnungsablaufs

Zunichst sei erwihnt, daf alle auftretenden Routinen als Funktionen realisiert sind, d.h., daff die in den Zwischen-
schritten berechneten Ergebnisse am Ende des Programmablaufs keiner weiteren Anwendung mehr zur Verfiigung
stehen'®. Um die Berechnung zu starten, kann entweder an der Eingabeaufforderung das Script guirwp_graphik.m
aufgerufen werden oder man startet das komplette Paket durch den Aufruf von geod_haupt .m. Beide Scripte dienen
dem Aufbau der graphischen Benutzeroberflichen. Mit der Berechnung der 2. geodétischen Hauptaufgabe, wird
nach Eingabe der Randwerte und der Steuerparameter in die Oberflache, durch Anklicken des Startbuttons mit
automatischem Aufruf der Funktion geo_haupt_2_graphik.m begonnen. Diese Funktion besitzt keine Ausgabe-
werte sondern dient nur zur Berechnung der Randwertaufgabe sowie als Schnittstelle fiir das GUIL. Nach Auslesen
der eingegebenen Daten wird zunéichst das Fenster initialisiert und eine erste Abschatzung der Entfernung wird
iiber die Lange eines Kreisbogens vorgenommen. Diese Abschéitzung dient der Niherungswertberechnung iiber den
Vertikalschnitt zur Bestimmung der Intervallteilung!?. Die Berechnung erfolgt durch die Funktion kreisbogen.m
welche die Linge eines Kreisbogens zwischen den Vektoren des Anfangs- und des Endpunktes beziiglich einer Kugel
mit dem Radius R = %t ermittelt. Nach dieser groben Ermittlung wird die Funktion vertikalschnitt.m, die
die Lange des Vertikalschnittes und dessen Richtung am Anfangs- sowie am Endpunkt berechnen soll, aufgerufen.

Ubergeben werden hier nur die Koordinaten des Anfangs- und Endpunktes, die iibrigen Steuerparameter wurden in

16 Ausgenommen sind hier die iiber das GUI im Fenster sichtbar oder versteckt iibergebenen Variablenwerte.
"Wenn das Programm fiir andere Ellipsoiddimensionen (6000km < a > 7000km) verwandt werden soll, so muf hier der Quelltext
abgeéndert werden, da die Intervallteilung durch Konstanten festgelegt wurde.
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Aufrufen der Funktion geo_haupt_2_graphik.m tiber "push-button’ aus guirwp_grapHik.m

;

Auslesen der Daten aus dem GUI

:

Kreisbogenberechnung zur Abschatzung der Lage des Endpunktes fr
die Berechnung der Lange des Vertikalschnittes

éy

[Xa, ba, Svers) = vertikalschnitt(x,, xp)

Auswerten der empirischen Iterationsfunktion (s, f,€)

an der Naherungsstelle s,.,¢

1. Aufruf von RK7multi.m mit den N&herungswerten der Vertikalschnittberechnu"ug

:

Ermittlung der Abweichungen von den Randbedingunden

:

Beginn des SchieRverfahrens
whi | e Abbruch ==

i

for i=1:4

1.Veranderung des Startwertes i um vorgegebene Variation
2. Erneute Berechnung der Anfangswertaufgabe

3. Ermittlung der Abweichungen von den Randbedingungen
4. Bestimmung des Differenzenquotienten fiir das Newtonverfahre

i

1. Losung des homogenen Gleichungssystems

2. Verbesserung der Startwerte um ermittelten Betrag

3. Berechnung des AWP’s mit den verbesserten Startwerten
4. Uberprifung des Abbruchkriteriums

5. 2-fache Kontrolle der Konvergenz des Verfahrens

=}

i
Ausgabe der Ergebnisse an die Benutzerschnittstellg

Abbildung 2.16: Fluftdiagramm zur Berechnung der 2. geodétischen Hauptaufgabe
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Abbildung 2.17: Graphische Benutzeroberfliche zur Losung der 2. geodatischen Hauptaufgabe

der aufrufenden Funktion zuvor als global deklariert. Wie im Abschnitt auf Seite 52 beschrieben, miissen, vor der
Berechnung der Strecken, die Tangentenvektoren fiir die Transformation der Ellipse in das ebene System bestimmt
werden. Dies geschieht durch die Funktion kart_lokal.m, die als Eingabewerte wiederum die Koordinaten der
Randpunkte verarbeitet. Da die Tangentenvektoren weiterhin verwendet werden, besitzt kart_lokal.m ebenfalls
keine Ausgabeparamter, sondern dndert nur die von vornherein als global deklarierten Variablen. Die Berechnung
der Linge des Vertikalschnittes erfolgt nach Ablauf von kart_lokal.m wieder in vertikalschnitt.m. Je nach
Lage des Endpunktes miissen unter Beriicksichtigung der {iber die Funktion kreisbogen .m erhaltenen Abschéitzung
die Streckenanteile in den einzelnen Integrationsintervallen berechnet werden. Ohne weiter auf die Berechnung,
die schon zuvor beschrieben wurde, einzugehen, sei erwihnt, daff diese von einzelnen kleineren Hilfsfunktionen,
deren Quellcode der beigefiigten Diskette entnommen werden kann, durchgefithrt wird. Zum Schlufy der Berech-

nung werden die zur Losung des Anfangswertproblems nétigen N#herungswerte (xg,t ) in einem Vektor an

@,Syert
die Ursprungsfunktion geo_haupt_2_graphik.m {ibergeben. Vor dem Start der Iteration erfolgt dann dort, mit
Initialisierung der Abbruchbedingung (siehe Seite 50), die erste Berechnung des AWP’s mit den o.g. Ndherungswer-
ten. Die Berechnung der Randbedingungen (2.8), bzw. der Soll-Ist Abgleich, wird von der gleichnamigen Funktion
randbedingungen.m durchgefiihrt. Danach startet das Schiefverfahren mit den einzelnen Berechnungen der An-
fangswertaufgaben, wobei in jedem Schritt auf 2 verschiedene Arten eine Uberpriifung auf Divergenz, sowie eine
Abfrage nach Zutreffen des Abbruchkriteriums erfolgt. Wird dieses erfiillt endet die Iteration, die Ergebnisse werden

an die Benutzerschnittstelle iibergeben und es erscheint die Meldung Berechnung beeendet.

2.4.4 Diskussion der mit dem Programm guirwp_graphik.m zu erzielenden Ergebnisse

In Tabelle 2.3 werden die Ergebnisse, wie auch schon bei der ersten Hauptaufgabe, Aringers Daten gegeniibergestellt.

Die der Berechnung zugrundeliegenden Ellipsoidparameter waren

a = 6378388 m
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und
b =6356911.94613 m

Die Randwerte fiir die Berechnung {iber guirwp_graphik.m, bildeten die von Aringer mit 3 Nachkommastellen an-
gegebenen Koordinaten. Die vorzugebende Genauigkeit zur Losung der Anfangswertaufgaben wihrend des Schiefs-
verfahrens wurde mit 0.0005 m angesetzt. Das Programm beendete die Iteration, wenn der berechnete Endpunkt
um weniger als 0.0001 m vom Sollwert entfernt war. Die fiir die Vertikalschnittberechnung nétige Intervallbreite
betrug 1 m. Fiir die relative Grofle der Variationen der Komponenten des Tangenteneinheitsvektors, hat sich ein

18 Der Verinderungsfaktor wurde

Wert von o5, fiir Variation der der Strecke von 1f5 als zweckmiifig erwiesen
mit 1.5 angesetzt. An dieser Stelle sei darauf hingewiesen, daf alle Verinderungen der mit den Variationen der
Anfangswerte zusammenhéngenden Steuerparameter, einen sehr grofien Einflul auf das Konvergenzverhalten des
Schiefsverfahrens haben. Um hier jedoch einen funktionalen Zusammenhang abzuleiten, bedarf es weiterer Unter-

suchungen die den Umfang dieser Arbeit iiberschreiten.

Wie der Tabelle zu entnehmen ist, differieren die Ergebnisse fiir die Azimute im Bereich von 10~® Sekunden. Die
Entfernung wird im Gegensatz dazu identisch erhalten. Es verwundert, dafl Aringer bei den Beispielen 2 - 6 das
Azimut auf die 7-te Nachkommastelle genau betimmen kann (vgl. Beispiele fiir die 1. geodétische Hauptaufgabe),
obwohl er die Koordinaten des Endpunktes, die er aus der Berechnung der Anfangswertaufgaben ermittelt hat, nur
mit 3 Nachkommastellen ansetzt. Das fiihrt dazu, daff der Vergleich der Ergebnisse nicht besonders aussagekréftig
ist.

Um die Integritidt des Programmsystems zu priifen, wurden einige Anfangswertaufgaben berechnet und die Ergeb-
nisse ungerundet in das Programm zur Lésung der Randwertaufgabe iibernommen. Dabei konnte keine Differenz,

auferhalb des Rahmens der Rechengenauigkeit, festgestellt werden.

2.5 Beschreibung des Programmsystems

Der Aufgabenstellung entsprechend wurde unter MATLAB ein Programmsystem!? erstellt, das einem Nutzer er-
laubt, geometrische, wie auch numerische Eigenschaften von geoditischen Linien auf einem Rotationsellipsoid zu
untersuchen. Um auch im Umgang mit MATLAB unerfahrenen Benutzern die Anwendung zu ermoglichen, wurde
das System mit einer graphischen Benutzeroberfliche (GUI) versehen. Diese erlaubt einen interaktiven Zugriff auf
MATLABEs interne Grafikfunktionen, ohne daf§ ein Benutzer sich vorher intensiv mit der Programmiersystem aus-
einandersetzen mufs. Abb. 2.19 zeigt das Hauptfenster des Systems, wie es sich, nach Eingabe von geod_haupt am
MATLAB-Prompt, 6ffnet. Mit Hilfe dieser Oberfléche lassen sich nun folgende Aufgaben l6sen:

1. Berechnung der 1. geoditischen Hauptaufgabe
2. Berechnung der 2. geoditischen Hauptaufgabe
3. Berechnung von Punkten auf einer geodétischen Linie und deren Abspeicherung in einer Datei

4. Eine dreidimensionale Darstellung des Verlaufs von geodétischen Linien?? auf dem zugrundeliegenden Ellipsoid

5. FEine dreidimensionale Visualisierung eines Parallelkoordinatensystems in Soldnerscher Anordnung

18Um in Beispiel 6 auf nur 12 Schritte zu gelangen, ist fiir die relative Variation der Strecke ﬁanzusetzen.
19Ein FluRdiagramm das den Aufbau des Programmsystems erldutert, ist in Abb. 2.18 dargestellt.
20Tm folgenden wird der Verlauf der Linie in Analogie zur Satellitenbahn als Ephemeride bezeichnet.
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Randwerte | iiber geod.Linie iiber Vertikalschnitt

Beispiel 1 guirwp_graphik.m Aringer guirwp_graphik.m Aringer
T1q = 4045649.321 [m] A, = 159°59’59.999985” A, = ...°..59.999984” A, = 159°59'59.992231” A, = ...°...°59.992362”
Toq = 713357.130 [m] A, = 160°21°24.925248” A = ...°..24.925379” A, = 160°21°24.940530” A, = ...°..24.940661”
Z3a = 4862882.427 [m] s = 100000[m] s = 100000[m] s = 1000000[m] s = 100000[m]

Z1. = 4110102.079 [m]

bendtigte Iterationen: 2

bendtigte Iterationen: 3

Toe = 759450.105 [m]

Iterationen zur Lsung der AWP’s: 3

z3. = 4801881.816 [m]

Beispiel 2
T1q = 4892928.819 [m] A, = 10°00°00.000026” A, = ...°..°00.000000” A, = 10°00°00.555657" Ag = ...°..700.555635”
ZToq = 0[m] A, = 11°39’15.778941” A, = ...°."15.778911” A, = 11°39°14.690175” A, = ...°.."14.690145”

T3a = 4078053.805 [m]

s = 1000000[m]

s = 1000000[m]

s = 1000000[m]

s = 1000000[m]

Z1. = 4202463.866 [m]

bendtigte Iterationen: 2

bendtigte Iterationen: 3

T2, = 172937.660 [m]

Iterationen zur Losung der AWP’s: 3

T3e = AT78979.770 [m]

Beispiel 3

T1a = 2662030.662 [m]

A, = 5°0°00.0000047”

A, = 5°00700.01311050”

T2, = 469387.829 [m]

A, = 173°48°43.328933”

A, = .°..700.000000”
A, = ...°..743.328938”

A, = 173°48’41.789155”

A, = .°..01.311046”
A, = ...°..741789160”

T3a = B757839.704 [m]

5 = 4999999.999[m]

s = 5000000[m]

5 =4999999.993 [m]

5 =5000000 [m]

z1. = —2185590.682 [m]

bendtigte Iterationen: 3

bendtigte Iterationen: 3

ZToe = 13443.884 [m]

Iterationen zur Losung der AWP’s: 6

Z3. = 5972056.282 [m]

Beispiel 4

Z1a = 1894899.301 [m]

Aa = 199°59°59.999965”

A, = 200°00°00.000000”

A, = 200°00°59.157638”

Ag, = ...°.."59.157672"

T2a = —1094020.622 [m]

A. = 187°07°17.004081”

A, = ...°..’17.004101”

A. = 187°05°18.805158”

A, = ...°..’18.805171"

T34 = 5971179.947 [m]

5 = 10000000.001[m]

s = 10000000[m]

s = 10000000.2482[mn]

s = 10000000.2606[m]

T1. = 3786572.285 [m]

bendtigte Iterationen: 4

bendstigte Iterationen: 4

Z9. = —4701166.890 [m]

Iterationen zur Losung der AWP’s:10

Tz = —2053338.194 [m]

Beispiel 5
T1a = 4045649.321 [m] Aq = 140°00°00.000017” A, = ...°..°00.000000” A, = 139°42'53.422259” A, = ...°..753.422242"
ZToq = 713357.130 [m] A, = 114°46°41.483912” A, = ...°..741.483903” A. = 115°11°27.067537” A, = ...°..27.067529”

T3q = 4862882.427 [m]

@

= 14999999.999[m]

5 = 14999999.999[m]

s = 15000052.7846[m]

s = 15000052.8051[m]

T1. = —757346.098 [m]

bendtigte Iterationen: 5

bendétigte Iterationen: 6

T2, = 2808023.982 [m]

Iterationen zur Losung der AWP’s: 14

T3. = —5657616.272 [m]

Beispiel 6
Z1a = 1405039.264 [m] Aq = 310°00°00.000633” A, = ...°..°00.000000” A, = 281°52°14,760975” A, = ...°..°14.759261”
ZToqa = —3860313.652 [m] A, = 230°48°04.188394” A, = ...°..04.189003” A. = 259°09°25,780566” A, = ...°..25.782254”

T34 = —4862882.427 [m]

@

= 19899999,998[m]

5 = 19899999.999[m]

s = 19911966,8419[m)]

s = 19911966.8693[m]

T1e. = —1477765.690 [m]

bendétigte Iterationen: 12

bendtigte Iterationen: 11

T2. = 3782381.275 [m]

Iterationen zur Lésung der AWP’s: 17

z30 = 4902141.177 [m]

Tabelle 2.3: Beispiele fiir die Losung der 2. geoditischen Hauptaufgabe
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Abbildung 2.18: Aufbau des Programmsystems



KAPITEL 2. NUMERISCHE UNTERSUCHUNGEN ZU DEN GEODATISCHEN HAUPTAUFGABEN 60
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Berechnung der 1. geodatischen

geod Hauptaufgabe
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geod 2 Hauptaufgabe
Darstellung bereits abgespeicherter
geod_plot E phemerniden
Darstellung eines
soldner Parallelkoordinatensyztems in Abbruch |
— Soldnerizcher AnardnLing

Abbildung 2.19: Benutzeroberfliche des Programmsystems

Da die Berechnung der Hauptaufgaben schon in den vorangegangenen Abschnitten erldutert wurde, sei im folgenden
kurz auf die Punkte 3-5 eingegangen.

2.5.1 Die Darstellung und Abspeicherung der Ephemeriden

Das Programm zur Darstellung der Ephemeriden wird jeweils nach der Berechnung der ersten bzw. zweiten geodati-
schen Hauptaufgabe aus den Oberflichen heraus gestartet. Nach der Wahl des Tastenfeldes Ephemeridenberechnung
offnet sich das Fenster in Abb. 2.20. Hier wird zum einen die gewiinschte Zahl der Stiitzpunkte?! der geoditischen
Linie eingetragen, zum anderen besteht die Moglichkeit zwischen zwei Arten der Darstellung des Ellipsoides zu wéh-
len. In der Gitterdarstellung werden nur die, iiber eine Hilfsfunktion berechneten Stiitzpunkte eines geographischen
ellipsoidischen Koordinatensystems mit Linien verbunden, dargestellt. Uber die Zahl der Stiitzstellen 158t sich frei
verfiigen. Bei der Flichendarstellung hingegen werden diese Gitterelemente farbig ausgefiillt, was dazu fiihrt, daf
die spater zwischen die Stiitzpunkte gezeichneten Verbindungslinien nicht mehr komplett sichtbar sind. Die Ge-
nauigkeit, mit der die Zwischenpunkte berechnet werden, richtet sich nach der Genauigkeit, die fiir die Berechnung
der Hauptaufgaben angesetzt wurde. Zur Verkiirzung der Rechenzeit wird die empirische Iterationsfunktion fiir
jeden Stiitzpunkt einzeln ausgewertet. Die Endpunktkoordinaten werden aufserdem zur Kontrolle ein zweites Mal
ermittelt. Nach der Bestétigung der Eingabe in Fenster Abb. 2.20 startet das Script ephemeridenberechnung.m,
es Offnet sich das Fenster mit der dreidimensionalen Darstellung des Ellipsoides, sowie das Fenster in Abb. 2.21.
Diesem kann wahrend der Berechnung die Nummer des aktuell ermittelten Punktes entnommen werden. Parallel
dazu werden im Grafikfenster die Stiitzpunkte als rote Kreuze geplottet. Die Richtung des Blickpunktes wird au-
tomatisch in Richtung des Anfangspunktvektors gesetzt, so daff die Linie vollsténdig im Blickfeld des Betrachters

erscheint. Anfangs- sowie Endpunkt werden durch einen, griin dargestellten, riumlichen Vektor hervorgehoben.

Am Ende der Berechnungen kénnen die kartesischen Koordinaten der Zwischenpunkte in einer bindren MATLAB-

21Dje Koordinaten dieser Punkte werden iiber eine Anfangswertaufgabe ermittelt.
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Abbildung 2.20: Auswahlfenster zur Ephemeridenberechnung

Abbildung 2.21: GUI zum Steuern der Ephemeridendarstellung und Abspeichern der Stiitzpunktkoordinaten
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x 10 Verlauf der geodatischen Linie:

6
AP T

X, [m] %, [m] x 10

Abbildung 2.22: Darstellung einer Ephemeride

Workspace (*.mat) Datei abgespeichert werden??. Hierbei ist zu beachten, daf falls mehrere Linien in einer Datei
zusammengefafit werden, diese sich auf dasselbe Ellipsoid beziehen sollten, da die Ellipsoidparameter ebenfalls dort
abgelegt werden. Der Dateiname mufy mit voller Pfadangabe, aber ohne Erweiterung angegeben werden.

Uber die Grafikoptionen im unteren Bereich des Steuerungsfensters 14t sich der Blickpunkt sowie ein gewiinschter
Zoomfaktor fiir die Darstellung festlegen. Abbildung 2.22 zeigt das graphische Ergebnis einer Ephemeridenberech-
nung mit 20 Stiitzstellen bei einer Linge der geodétischen Linie von 15000km.

2.5.2 Auslesen und Plotten der Datensitze

Im Hauptfenster gelangt man durch Wahl des Schalters geod_plot zu einer Moglichkeit mehrere, im Anschluff an
die Berechnung der Hauptaufgaben abgespeicherte Linienverldufe, darzustellen. (Abb. 2.23 zeigt die zugehorige
Oberflache) Durch Angabe des gewiinschten Dateinamens im Rahmen Datensatz und anschlieflender Wahl des
Schalters Laden wird der Inhalt der Datei im darunter liegenden Auswahlfenster angezeigt. Sollen mehrere Linien
innerhalb einer Grafik dargestellt werden, so muft unter den Plotoptionen das Feld hinzufiigen angew&hlt sein.
Das im Anschlufs daran vorliegende dreidimensionale Modell kann mit Hilfe der Maus beliebig um seine 3 Achsen

gedreht werden. Die Art der Darstellung der Ephemeride ist frei wihlbar.

Da es programmiertechnisch einfacher war in den Auswahlfenstern die MATLAB spezifischen Abbkiirzungen fiir
Farbe und Form der graphischen Objekte anzeigen zu lassen, sind die entsprechenden Zuordnungen in den Tabellen
2.4-2.6 kurz aufgefiihrt. Ein Beispiel fiir die Darstellung mehrerer Ephemeriden zeigt Abb. 2.24.

22Der Vorteil der biniren Dateien liegt darin, daf man in einer solchen, auf einfache Weise, verschiedene Linien unter eigenen
Bezeichnern abspeichern kann. MATLAB bietet zusdtzlich die Moglichkeit diese Datei im ASCII Format auszugeben.
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Abbildung 2.23: Darstellungsschnittstelle

| Symbol | Linientyp |

- durchgezogen
- gestrichelt
gepunktet

- abwechselnd
none | keine Darstellung

Tabelle 2.4: Zuordnung der Linientypen

| Symbol | Punktbeschreibung |

+ Plus

o} Kreis

* Stern

X Kreuz

s Quadrat

d Raute

h Hexagramm
Punkt

Tabelle 2.5: Zuordnung der Punktsymbole

63
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|Abbkﬁrzung| Farbe |

k Schwarz
w Weifs

r Rot

g Griin

b Blau

y Gelb

c Cyan
m Magenta

Tabelle 2.6: Zuordnung der Farben

Verlauf der geodétischen Linie(n) auf dem Rotationsellipsoid

x 10° - i ?,

x 10

X, [m]

Abbildung 2.24: Darstellung mehrerer Ephemeriden nach Auslesen der Datensétze
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Aquator

Bezugsmeridian

Abbildung 2.25: Prinzip eines Parallelkoordinatensystems in Soldnerscher Anordnung

2.5.3 Berechnung eines Parallelkoordinatensystems in Soldnerscher Anordnung

Die zum Programmsystem gehdérende Funktion Soldner.m dient der Untersuchung des Verlaufs von geodétischen

Linien in der N&ihe des Querpols eines globalen Parallelkoordinatensystems in Soldnerscher Anordnung.

2.5.3.1 Grundlagen

Bei einem allgemeinen geodétischen Parallelkoordinatensystem auf einem Rotationsellipsoid findet als Abzissen-
linie, der durch den Koordinatenanfangspunkt verlaufende Meridian Verwendung. Die Lage eines Punktes wird
durch die Bogenlidnge auf der Abzissenlinie, sowie die Linge einer geoditischen Linie durch diesen Punkt, die die
Abzissenlinie senkrecht schneidet, bestimmt. Dabei entspricht z der Bogenlinge auf der Abzissenlinie, gemessen
vom Koordinatenanfangspunkt Py zum Fufipunkt Pr und y der Linge der geodédtischen Linie durch P und Pr .
(vgl. Abb. 2.25)

z und y werden in diesem Zusammenhang als die ellipsoidischen Parallelkoordinaten des Punktes P bezeichnet. Sie
lassen sich als Gaufische Flachenparameter auf dem Ellipsoid interpretieren. Die als Ordinatenlinien bezeichneten
geodétischen Linien verlaufen auf dem Ellipsoid weder eben noch sind es geschlossene Kurven. Ebenso bilden die
Abzissenlinien oder geodatische Parallelen, zwar geschlossene, jedoch keine ebenen Kurven. An Stelle des Querpols,
der sich bei Einfiihrung eines Parallelkoordinatensystems als Schnittpunkt der Geodéten auf der Kugel ergibt, bildet
sich im Falle eines Rotationsellipsoides ein, zum Aquator symmetrisches Gebiet, das durch eine asteroidenférmige
Flachenkurve begrenzt wird. Mit Hilfe des im folgenden beschriebenen Programms 14ft sich diese Figur anhand eines

dreidimensionalen Gittermodells des Koordinatennetzes in Abhéngigkeit gewisser Parameter graphisch darstellen.

2.5.3.2 Beschreibung des Programms

Das Programm kann entweder von der Eingabeaufforderung durch Aufruf des Skriptes soldner_graphik.moder im
Hauptfenster des Programmsystems, durch Wahl des Schalters soldner, gestartet werden. Uber das Steuerfenster
(sieche Abb. 2.26) lassen sich die Ellipsoidparameter, die Zahl der Stiitzpunkte des Koordinatensystems, sowie die
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Frogramm rur farsteffung smmes
Farafiefkaordinalensysiems in Salonersoher
Anoranung

Farm Farbe
a[m]: E350000
Bezugsordinate I' .l I': vI
f: IT

Ordinatenlinien m m
Abzisserlinien m m

Gradteilung der 18
Breite:

Punktart .
|+ T | Streckenteilung der
I 2000 - |

Ordinaten [km]:

Genauigkeitsvorgabe:  [gn -
Flatten |

Zurlick zur Hauptauzwahl |

-

Abbildung 2.26: GUI zur Darstellung eines Soldner’schen Koordinatensystems

Genauigkeit der Berechnung festlegen. Die Berechnung wird durch Auswahl des Buttons Plotten, der das Script
Soldner.m aufruft, begonnen. Zunichst wird der Bezugsmeridian A = 0 entsprechend der Wahl der Breitenteilung
in Intervalle aufgeteilt. Dabei sei anzumerken, dafs durch eine solche Teilung zwar keine gleichen Langenteilung
des Bezugmeridians erreicht wird, jedoch ist dies fiir die Darstellung der Figur auch nicht erforderlich. Da es sich
bei dem zugrundegelegten Ellipsoid um einen rotationssymetrischen Kérper handelt, reicht es aus, die Stiitzpunkte
des Koordinatennetzes fiir nur einen Oktanten dieses Korpers zu berechnen und die anderen durch Spiegelungen
abzuleiten. Im Programm selbst werden fiir die einzelnen Stiitzpunkte des Bezugsmeridians sukzessive Anfangs-
wertaufgaben fiir ein Azimut von 100 gon und einer Streckenteilung geméafs der Auswahl im Fenster fiir ein Intervall
von 10000 km gelost. Dabei ist zu beachten dafs, falls ein Rotationsellipsoid einer anderen Gréfienordnung als der
eines Erdellipsoides gewahlt wird, dieser Wert im Quellcode sinnvoll abzudndern ist. Die Auswahl der Genauigkeit
dient in diesem Fall einer Steigerung der Rechengeschwindigkeit. Auch hier wird die Iterationsfunktion fiir jedes
einzelne AWP erneut ausgewertet und die auf diese Weise ermittelte Zahl der notwendigen Iterationen wird der Be-
rechnung zugrundegelegt. Tabelle 2.7 zeigt jeweils 4 verschiedene Ansichten eines Modells, wie es sich nach Ablauf
der Berechnung dem Betrachter darstellt.

2.6 Beispiel zur Anwendung des Programmsystems

Nach dem Satz von Clairaut 15t sich der Verlauf einer geodétischen Linie auf einem rotationsymmetrischen Korper
beschreiben mit

p - sin (a) = const (2.13)

p entspricht dabei dem Parallelkreishalbmesser, der sich ausgedriickt, durch die reduzierte Breite 3, darstellen 1afst
iber

p=a-cos ()
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x
3
Blick auf Bezugsmeridian

Tabelle 2.7: Koordinatennetz eines Parallelkoordinatensystems in Soldnerscher Anordnung

| Bezeichnung | Farbe | aj [°] | Bmaz [°] | ¢mas [°] ]

Linie 1 schwarz 10 80 82.9088

Linie 2 rot 20 70 75.5985

Linie 3 griin 40 50 59.3748

Linie 4 blau 60 30 39.2951
Tabelle 2.8:

67

Gilt 8 =0, und bezeichne a 4 das Azimut der geoditischen Linie am Aquator, so folgt p = a und fiir (2.13) folgt

a-sin(aj) = const = pmin

Die Konstante p,,;, entspricht dabei dem minimalen Parallelkreishalbmesser, der von der geodatischen Linie nicht

unterschritten wird. Diesem entspricht die maximale reduzierte Breite 8,40 = § — o j,die nicht iberschritten wird.

Damit schwingt die geodétische Linie, mit einer von der Abplattung a und dem Azimut «j; abhingigen Periode,

symmetrisch zum Aquator zwischen den reduzierten Breiten Byaz und —fBpmqez. Mit Hilfe des Darstellungsprogramms

fiir den Verlauf geodétischer Linien 14fst sich dieses Verhalten graphisch veranschaulichen. Es wurden fiir ein Ellipsoid

mit den Parametern

o
I

S8
Il

6378388 m
4500000 m
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Sicht auf Startpunkt

11 %, [m]

x, [m]

Abbildung 2.27: Veranschaulichung der geometrischen Bedeutung des Satzes von Clairaut fir den Verlauf der
geodétischen Linien

4 Losungen der ersten geoditischen Hauptaufgabe fiir die Azimute o ;5 = 10°,20°,40° und 60° bestimmt. Das
Integrationsintervall betrug dabei 80000000 m . Der Ortsvektor des Startpunktes lautet

6378388 m
X = 0m

0m

Abbildung 2.27 bietet eine dreidimensionale Aufsicht der sich ergebenden Darstellung. Zur besseren Unterscheidung
der Linien seien zusitzlich die 2 Projektionen in Form der Abbildungen 2.28 und 2.29 beigefiigt. Die farbliche

Zuordnung der Linien, sowie die zugehorigen Werte fiir die maximalen Breiten sind Tabelle 2.823 zu entnehmen.

2.7 Anmerkungen zum Anhang

Der Arbeit sind als Anhang die wichtigsten MATLAB-Scripte, die schon im Flufdiagramm 2.18 bezeichnet wurden,
beigefiigt. Zur Programmierung der Oberflache kann leider kein Quellcode abgegeben werden, da diese interaktiv,
per Drag & Drop, geschieht und hierbei zusétzlich entstehender Code in bindren Dateien abgespeichert wird. Als
Beispiel fiir ein, bei der Oberflichenprogrammierung automatisch von MATLAB erstelltes Script, kann der Ausdruck
der Datei 1iniendarstellung.m, welche den Aufbau der Oberfliche aus Abb. 2.23 regelt, ebenfalls dem Anhang

entnommen werden.

23Die Berechnung der geographischen Breiten ¢mqz aus den reduzierten Bz erfolgt nach tan (@) = V1 + €2 - tan (3).
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Abbildung 2.28: Projektion der Abb. 2.27 in die x25x3 -Ebene

Abbildung 2.29: Projektion der Abb. 2.27 in die z;z5 -Ebene
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